Review
Open Access
Recent trends in natural polymer-based hydrogels for biomedical applications
1 West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610065, China
2 Xinyu Yuanhe Hospital, Xinyu, Jiangxi, China
Abstract

Hydrogels with large specific surface area, high water content, tissue similarity, three-dimensional bionic structure, adjustable conductive path, stimulus responsiveness and many other excellent characteristics have become the most potential candidate for biomedical applications. Among them, hydrogels derived from natural polymers are arousing wide attention due to its excellent biological activity and distinctive physicochemical properties. Hence, this review concentrates on the recent trends in natural polymer-based hydrogels in the field of biomedical applications. First, we give a summary of the common natural materials for hydrogel fabrications, including polysaccharides, proteins, and polyphenols. Next, we discuss the design strategies of natural polymer-based hydrogels based on the physical or chemical cross-linking reactions. Then, we outline the fundamental functions of natural polymer-based hydrogels required for biomedical applications. Further, we summarized the representative biomedical applications of natural polymer-based hydrogels. Finally, we make concluding commentaries on the challenges and prospects about natural polymer-based hydrogels for biomedical applications. We hope this review will provide insightful information for future development of natural polymer-based hydrogels for biomedical applications.

Keywords

Natural polymer; hydrogel; biomedical applications

Preview
References
  • [1] Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr. Polym. 2024, 323: 121408.
  • [2] Zhang W, Wang R, Sun Z, Zhu X, Zhao Q, et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications, Chem. Soc. Rev. 2020, 49(2): 433-464.
  • [3] Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem. Rev. 2021, 121(18): 11149-1119
  • [4] Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 2020, 5(1): 20-43.
  • [5] Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord. Chem. Rev. 2020, 420: 213432.
  • [6] Yang Y, Xu L, Wang J, Meng Q, Zhong S, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr. Polym. 2022, 283: 119161.
  • [7] Kuzina MA, Kartsev DD, Stratonovich AV, Levkin PA. Organogels versus Hydrogels: Advantages, Challenges, and Applications. Adv. Funct. Mater. 2023, 33(27): 2301421.
  • [8] Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem. Soc. Rev. 2023, 52(15): 5317-5339.
  • [9] Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1(12): 16071.
  • [10] Zhong R, Talebian S, Mendes BB, Wallace G, Langer R, et al. Hydrogels for RNA delivery. Nat. Mater. 2023, 22(7): 818-831.
  • [11] Farazin A, Shirazi FA, Shafiei M. Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review. Int. J. Biol. Macromol. 2023, 244: 125454.
  • [12] Yuan N, Shao K, Huang S, Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int. J. Biol. Macromol. 2023, 240: 124321.
  • [13] Zheng J, Zhu C, Xu X, Wang X, Fu J. Supramolecular assemblies of multifunctional microgels for biomedical applications. J. Mater. Chem. B 2023, 11(27): 6265-6289.
  • [14] Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6(10): 726-744.
  • [15] Li X, Wu X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review. Int. J. Biol. Macromol. 2023, 253: 126611.
  • [16] Hao L, Mao H. Magnetically anisotropic hydrogels for tissue engineering. Biomater. Sci. 2023.
  • [17] Distler T, Boccaccini AR. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review. Acta Biomater. 2020, 101: 1-13.
  • [18] Barhoum A, Sadak O, Ramirez IA, Iverson N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv. Colloid Interface Sci. 2023, 317: 102920.
  • [19] Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, et al. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Controlled Release 2022, 351: 361-380.
  • [20] Zhang K, Liu Y, Shi X, Zhang R, He Y, et al. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int. J. Biol. Macromol. 2023, 242: 125192.
  • [21] Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12(5): 1114.
  • [22] Awasthi S, Gaur JK, Bobji MS, Srivastava C. Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. J. Mater. Sci. 2022, 57(17): 8041-8063.
  • [23] Sennakesavan G, Mostakhdemin M, Dkhar LK, Seyfoddin A, Fatihhi SJ, Acrylic acid/acrylamide based hydrogels and its properties - A review. Polym. Degrad. Stab. 2020, 180: 109308.
  • [24] Wang Z, Ye Q, Yu S, Akhavan B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv. Healthcare Mater. 2023, 12(18): 2300105.
  • [25] Germershaus O, Lühmann T, Rybak JC, Ritzer J, Meinel L. Application of natural and semi-synthetic polymers for the delivery of sensitive drugs. Int. Mater. Rev. 2015, 60(2): 101-131.
  • [26] Wang Z, Wei H, Huang Y, Wei Y, Chen J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem. Soc. Rev. 2023, 52(9): 2992-3034.
  • [27] Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog. Polym. Sci. 2021, 123: 101472.
  • [28] Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14(15): 3023.
  • [29] Liu Y, Hsu SH. Synthesis and Biomedical Applications of Self-healing Hydrogels. Front. Chem. 2018, 6.
  • [30] Zhao L, Zhou Y, Zhang J, Liang H, Chen X, et al. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15(10): 2514.
  • [31] Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, et al. Challenges and recent trends with the development of hydrogel fiber for biomedical applications. Chemosphere 2022, 287: 131956.
  • [32] Sathiyaseelan A, Vishven Naveen K, Zhang X, Han K, Wang MH. Research progress on chitosan-zinc oxide nanocomposites fabrication, characterization, biomedical and environmental applications. Coord. Chem. Rev. 2023, 496: 215398.
  • [33] Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. JCR 2020, 326: 150-163.
  • [34] Yang Y, Wu D. Energy-Dissipative and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chin. J. Chem. 2022, 40(17): 2118-21
  • [35] Ravishankar K, Dhamodharan R. Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents, React. Funct. Polym. 2020, 149: 104517.
  • [36] Tian B, Hua S, Tian Y, Liu J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J. Mater. Chem. B 2020, 8(44): 10050-10064.
  • [37] Do NHN, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr. Polym. 2022, 294: 119726.
  • [38] Wei Q, Zhou J, An Y, Li M, Zhang J, et al. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int. J. Biol. Macromol. 2023, 232: 123450.
  • [39] Frent OD, Vicas LG, Duteanu N, Morgovan CM, Jurca T, et al. Sodium Alginate—Natural Microencapsulation Material of Polymeric Microparticles. Int. J. Mol. Sci. 2022, 23(20): 12108.
  • [40] Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, et al. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20(6): 364.
  • [41] Guo X, Wang Y, Qin Y, Shen P, Peng Q. Structures, properties and application of alginic acid: A review. Int. J. Biol. Macromol. 2020, 162: 618-628.
  • [42] Uthappa UT, Suneetha M, Ajeya KV, Ji SM. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics 2023, 15(6): 1713.
  • [43] An C, Li H, Zhao Y, Zhang S, Zhao Y, et al. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int. J. Biol. Macromol. 2023, 231: 123307.
  • [44] Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater. Today Bio 2022, 17: 100495.
  • [45] Ding YW, Wang ZY, Ren ZW, Zhang XW, Wei DX. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater. Sci. 2022, 10(13): 3393-3409.
  • [46] Zheng Z, Patel M, Patel R. Hyaluronic acid-based materials for bone regeneration: A review. React. Funct. Polym. 2022, 171: 105151.
  • [47] Luo Z, Wang Y, Li J, Wang J, Yu Y, et al. Tailoring Hyaluronic Acid Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2023, n/a(n/a): 2306554.
  • [48] Wu C, Li J, Zhang YQ, Li X, Wang SY, et al. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. ChemSusChem 2023, n/a(n/a): e202300518.
  • [49] Luo Q, Shen H, Zhou G, Xu X. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components. Carbohydr. Polym. 2023, 303: 1204
  • [50] Acharya S, Liyanage S, Parajuli P, Rumi SS, Shamshina JL, et al. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13(24): 4344.
  • [51] Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, et al. Preparation of cellulose-based hydrogel: a review. J. Mater. Res. Technol. 2021, 10: 935-952.
  • [52] Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents. Polym. Chem. 2022, 13(3): 359-372.
  • [53] Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, et al. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016, 216: 1066-1076.
  • [54] Sun J, Shang M, Zhang M, Yu S, Yuan Z, et al. Konjac glucomannan/cellulose nanofibers composite aerogel supported HKUST-1 for CO2 adsorption. Carbohydr. Polym. 2022, 293: 119720.
  • [55] Liu Q, Liu J, Qin S, Pei Y, Zheng X, et al. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Int. J. Biol. Macromol. 2020, 164: 1776-1784.
  • [56] Jiang L, Jiang B, Xu J, Wang T. Preparation of pH-responsive oxidized regenerated cellulose hydrogels compounded with nano-ZnO/chitosan/aminocyclodextrin ibuprofen complex for wound dressing. Int. J. Biol. Macromol. 2023, 253: 126628.
  • [57] Sun J, Zhang J, Peng X, Zhang X, Yuan Z, et al. Carboxymethyl cellulose/polyvinyl alcohol composite aerogel supported beta molecular sieve for CH4 adsorption and storage. Carbohydr. Polym. 2023, 321: 121246.
  • [58] Huang LJ, Lee WJ, Chen YC. Bio-Based Hydrogel and Aerogel Composites Prepared by Combining Cellulose Solutions and Waterborne Polyurethane. Polymers 2022, 14(1): 204.
  • [59] Bian H, Wei L, Lin C, Ma Q, Dai H, et al. Lignin-Containing Cellulose Nanofibril-Reinforced Polyvinyl Alcohol Hydrogels. ACS Sustainable Chem. Eng. 2018, 6(4): 4821-4828.
  • [60] Khodadadi Yazdi M, Taghizadeh A, Taghizadeh M, Stadler FJ, Farokhi M, et al. Agarose-based biomaterials for advanced drug delivery. J. Controlled Release 2020, 326: 523-543.
  • [61] Jiang F, Xu XW, Chen FQ, Weng HF, Chen J, et al. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar. Drugs 2023, 21(5): 299.
  • [62] Salati MA, Khazai J, Tahmuri AM, Samadi A, Taghizadeh A, et al. Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers 2020, 12(5): 1150.
  • [63] Guo C, Li C, Kaplan DL. Enzymatic Degradation of Bombyx mori Silk Materials: A Review. Biomacromolecules 2020, 21(5): 1678-1686.
  • [64] Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, et al. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers 2019, 11(12): 1933.
  • [65] Qi Y, Wang H, Wei K, Yang Y, Zheng RY, et al. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18(3): 237.
  • [66] Montaseri Z, Abolmaali SS, Tamaddon AM, Farvadi F. Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J. Drug Delivery Sci. Technol. 2023, 79: 104018.
  • [67] Zhao Y, Zhu ZS, Guan J, Wu SJ. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 2021, 125: 57-71.
  • [68] Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J. Mater. Chem. B 2021, 9(5): 1238-1258.
  • [69] Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, et al. Silk fibroin for skin injury repair: Where do things stand? Adv. Drug Delivery Rev. 2020, 153: 28-53.
  • [70] Djagny KB, Wang Z, Xu S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41(6): 481-492.
  • [71] Lu Y, Luo Q, Chu Y, Tao N, Deng S, et al. Application of Gelatin in Food Packaging: A Review. Polymers 2022, 14(3): 436.
  • [72] Segtnan VH, Isaksson T. Temperature, sample and time dependent structural characteristics of gelatine gels studied by near infrared spectroscopy. Food Hydrocoll. 2004, 18(1): 1-11.
  • [73] Kang JI, Park KM. Advances in gelatin-based hydrogels for wound management, J. Mater. Chem. B 2021, 9(6): 1503-1520.
  • [74] Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E, Salomón-Carlos J, Cheng N. Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers 2023, 15(13): 2762.
  • [75] Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25(8): 1813-1827.
  • [76] Wu J, Xiao J, Zhu M, Yang H, Liu J, et al. Study of Physicochemical and Gelation Properties of Fish Gelatin from Different Sources. Applied Sciences 2023, 13(9): 5337.
  • [77] Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, et al. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll. 2022, 131: 107748.
  • [78] Chen Q, Pei Y, Tang K, Albu-Kaya MG. Structure, extraction, processing, and applications of collagen as an ideal component for biomaterials - a review. Collagen and Leather 2023, 5(1): 20.
  • [79] Fullana MJ, Wnek GE. Electrospun collagen and its applications in regenerative medicine. Drug Deliv. Transl. Res. 2012, 2(5): 313-322.
  • [80] Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 2021, 61(6): 1027-1037.
  • [81] Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, et al. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146: 100641.
  • [82] Devernois E, Coradin T. Synthesis, Characterization and Biological Properties of Type I Collagen–Chitosan Mixed Hydrogels: A Review. Gels 2023, 9(7): 518.
  • [83] Rana D, Desai N, Salave S, Karunakaran B, Giri J, et al. Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels 2023, 9(8): 643.
  • [84] Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater. Sci. 2021, 9(5): 1583-1597.
  • [85] Lund MN. Reactions of plant polyphenols in foods: Impact of molecular structure. Trends Food Sci. Technol. 2021, 112: 241-251.
  • [86] Xu Y, Hu J, Zhang X, Yuan D, Duan G, et al. Robust and multifunctional natural polyphenolic composites for water remediation. Mater. Horiz. 2022, 9(10): 2496-2517.
  • [87] Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, et al. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed. Pharmacother. 2023, 166: 115328.
  • [88] Hong KH. Polyvinyl alcohol/tannic acid hydrogel prepared by a freeze-thawing process for wound dressing applications. Polym. Bull. 2017, 74(7): 2861-2872.
  • [89] Pan X, Wang Q, Guo R, Ni Y, Liu K, et al. An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels. J. Mater. Chem. A 2019, 7(9): 4525-4535.
  • [90] Huang H, Gong W, Wang X, He W, Hou Y, et al. Self-Assembly of Naturally Small Molecules into Supramolecular Fibrillar Networks for Wound Healing. Adv. Healthcare Mater. 2022, 11(12): 2102476.
  • [91] Cooke G, Rotello VM. Methods of modulating hydrogen bonded interactions in synthetic host–guest systems. Chem. Soc. Rev. 2002, 31(5): 275-286.
  • [92] Henrique Carline de Lima H, Mansano Santos G, Thiago Pereira da Silva C, Calvi Mori J, de Carvalho Rinaldi J, et al. Synthesis and characterization of a hydrophobic association hydrogel for drug delivery. J. Mol. Liq. 2023, 372: 120709.
  • [93] Zhang Y, Bai G, Jin G, Wang Y, Wang J, et al. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit. Rev. Food Sci. Nutr. 2022: 1-19.
  • [94] Lu H, Li X, Tian T, Yang H, Quan G, et al. The pH-responsiveness carrier of sanxan gel beads crosslinked with CaCl2 to control drug release. Int. J. Biol. Macromol. 2023, 250: 126298.
  • [95] Charlet A, Lutz-Bueno V, Mezzenga R, Amstad E. Shape retaining self-healing metal-coordinated hydrogels. Nanoscale 2021, 13(7): 4073-4084.
  • [96] Zhao Z, Li G, Ruan H, Chen K, Cai Z, et al. Capturing Magnesium Ions via Microfluidic Hydrogel Microspheres for Promoting Cancellous Bone Regeneration. ACS Nano 2021, 15(8): 13041-13054.
  • [97] Wang Y, Xie Y, Xie X, Wu D, Wu H, et al. Compliant and Robust Tissue-Like Hydrogels via Ferric Ion-Induced of Hierarchical Structure. Adv. Funct. Mater. 2023, 33(12): 2210224.
  • [98] Harada T, Sato H, Hirashima Y, Igarashi K, Suzuki A, et al. Swelling behavior of poly(sodium acrylate) gels crosslinked by aluminum ions. Colloids Surf., B 2004, 38(3): 209-212.
  • [99] Chen H, Lv Y, Zhang S, Yin H, Feng Y. Doubly cross-linked polymer gels with ultra-high-thermal stability for hydrofracking. J. Appl. Polym. Sci. 2023, 140(22): e53892.
  • [100] Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, et al. Highly stretchable and tough hydrogels. Nature 2012, 489(7414): 133-136.
  • [101] Kumar M, Gehlot PS, Parihar D, Surolia PK, Prasad G. Promising grafting strategies on cellulosic backbone through radical polymerization processes – A review. Eur. Polym. J. 2021, 152: 110448.
  • [102] Simaan-Yameen H, Bar-Am O, Saar G, Seliktar D. Methacrylated fibrinogen hydrogels for 3D cell culture and delivery. Acta Biomater. 2023, 164: 94-110.
  • [103] Pratiwi FT, Solikhah MD, Arisanti AG, Matheofani. Acrylamide and Acrylate Based Hydrogel for Water Adsorption in Biodiesel. IOP Conf. Ser.: Earth Environ. Sci 2023, 1187(1): 012044.
  • [104] Wang J, Wu W, Lin Z. Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. J. Appl. Polym. Sci. 2008, 109(5): 3018-3023.
  • [105] Clara I, Natchimuthu N. Hydrogels of sodium alginate based copolymers grafted with sodium-2-acrylamido-2-methyl-1-propane sulfonate and methacrylic acid for controlled drug delivery applications. J. Macromol. Sci. A 2018, 55(2): 168-175.
  • [106] Welsh ER, Price RR. Chitosan Cross-Linking with a Water-Soluble, Blocked Diisocyanate. 2. Solvates and Hydrogels. Biomacromolecules 2003, 4(5): 1357-1361.
  • [107] Wu P, Fang Y, Chen K, Wu M, Zhang W, et al. Study of double network hydrogels based on sodium methacrylate alginate and carboxymethyl chitosan. Eur. Polym. J. 2023, 194: 112137.
  • [108] Kurdtabar M, Saif Heris S, Dezfulian M. Characterization of a Multi-responsive Magnetic Graphene Oxide Nanocomposite Hydrogel and Its Application for DOX Delivery. Chin. J. Polym. Sci. 2021, 39(12): 1597-1608.
  • [109] Etemadi Baloch F, Afzali D, Fathirad F. Design of acrylic acid/nanoclay grafted polysaccharide hydrogels as superabsorbent for controlled release of chlorpyrifos. Appl. Clay Sci. 2021, 211: 106194.
  • [110] Hu X, Wang Y, Zhang L, Xu M, Zhang J, et al. Photopatterned salecan composite hydrogel reinforced with α-Mo2C nanoparticles for cell adhesion. Carbohydr. Polym. 2018, 199: 119-128.
  • [111] Su Y, Feng T, Feng W, Pei Y, Li Z, et al. Mussel-Inspired, Surface-Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. Macromol. Rapid Commun. 2019, 40(17): 1900268.
  • [112] Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol. Rapid Commun. 2021, 42(10): 2100025.
  • [113] Yu G, Niu C, Liu J, Wu J, Jin Z, et al. Preparation and Properties of Self-Cross-Linking Hydrogels Based on Chitosan Derivatives and Oxidized Sodium Alginate. ACS Omega 2023, 8(22): 19752-19766.
  • [114] Wang P, Li J, Zhang W, Ren Y, Ma J, et al. 3D printed heart valve mediated nitric oxide sustained release reduced potential for calcification and inflammatory capacity. Chem. Eng. J. 2023, 469: 143892.
  • [115] Sun A, Hu D, He X, Ji X, Li T, et al. Mussel-inspired hydrogel with injectable self-healing and antibacterial properties promotes wound healing in burn wound infection. NPG Asia Mater. 2022, 14(1): 86.
  • [116] Su H, Zheng R, Jiang L, Zeng N, Yu K, et al. Dextran hydrogels via disulfide-containing Schiff base formation: Synthesis, stimuli-sensitive degradation and release behaviors. Carbohydr. Polym. 2021, 265: 118085.
  • [117] Yan Q, Long X, Zhang P, Lei W, Sun D, et al. Oxidized Bletilla rhizome polysaccharide-based aerogel with synergistic antibiosis and hemostasis for wound healing. Carbohydr. Polym. 2022, 293: 119696.
  • [118] Xu J, Liu Y, Hsu SH. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules, 2019.
  • [119] Fotouhi L, Heravi MM, Zadsirjan V, Atoi PA. Electrochemically Induced Michael Addition Reaction: An Overview. Chem. Rec. 2018, 18(11): 1633-1657.
  • [120] Quadrado RFN, Macagnan KL, Moreira AS, Fajardo AR. Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. Int. J. Biol. Macromol. 2021, 193: 1032-1042.
  • [121] Ye B, Zhang S, Li R, Li L, Lu L, et al. An in-situ formable and fibrils-reinforced polysaccharide composite hydrogel by self-crosslinking with dual healing ability. Compos. Sci. Technol. 2018, 156: 238-246.
  • [122] Li R, Cai Z, Li Z, Zhang Q, Zhang S, et al. Synthesis of in-situ formable hydrogels with collagen and hyaluronan through facile Michael addition. Mater. Sci. Eng. C 2017, 77: 1035-1043.
  • [123] Pupkaite J, Rosenquist J, Hilborn J, Samanta A. Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction. Biomacromolecules 2019, 20(9): 3475-3484.
  • [124] Summonte S, Racaniello GF, Lopedota A, Denora N, Bernkop-Schnürch A. Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. JCR 2021, 330: 470-482.
  • [125] Li Z, Lu F, Liu Y. A Review of the Mechanism, Properties, and Applications of Hydrogels Prepared by Enzymatic Cross-linking. J. Agric. Food. Chem. 2023, 71(27): 10238-10249.
  • [126] Avilla-Royo E, Vonzun L, Seehusen F, Vallmajo-Martin Q, Famos F, et al. Engineered Platelet-Derived Growth Factor-Releasing Hydrogels Promote Fetal Membrane Healing In Vivo. Adv. Funct. Mater. 2023, 33(9): 2208910.
  • [127] Wang S, Huang W, Feng Z, Tian X, Wang D, et al. Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight. Int. J. Biol. Macromol. 2023, 231: 123239.
  • [128] Kim SH, Lee SH, Lee JE, Park SJ, Kim K, et al. Tissue adhesive, rapid forming, and sprayable ECM hydrogel via recombinant tyrosinase crosslinking. Biomaterials 2018, 178: 401-412.
  • [129] Zheng N, Xu Y, Zhao Q, Xie T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121(3): 1716-1745.
  • [130] Jiang Y, Guo S, Jiao J, Li L. A Biphasic Hydrogel with Self-Healing Properties and a Continuous Layer Structure for Potential Application in Osteochondral Defect Repair. Polymers 2023, 15(12): 2744.
  • [131] Ma W, Yang X, Liu HB, Guo ZR, Zhang JL, et al. Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding. React. Funct. Polym. 2023, 184: 105513.
  • [132] Rizwan A, Gulfam M, Jo SH, Seo JW, Ali I, et al. Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application. Eur. Polym. J. 2023, 191: 112019.
  • [133] Hao Y, Zhou M, Chen R, Mao X, Huang WC. A bioinspired hydrogel carrier with pH/redox dual responsiveness for effective protection and intestinal targeted delivery of probiotics. J. Food Eng. 2023, 359: 111695.
  • [134] Xia X, Song S, Wen Y, Qi J, Cao L, et al. A simple method for fabricating drugs containing a cis-o-diol structure into guanosine-based supramolecular hydrogels for drug delivery. Biomater. Sci. 2023, 11(9): 3092-3103.
  • [135] Liu S, Li L. Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan. ACS Appl. Mater. Interfaces 2016, 8(43): 29749-29758.
  • [136] Xu X, Jerca VV, Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater. Horiz. 2021, 8(4): 1173-1188.
  • [137] Yin Y, Gu Q, Liu X, Liu F, McClements DJ. Double network hydrogels: Design, fabrication, and application in biomedicines and foods. Adv. Colloid Interface Sci. 2023, 320: 102999.
  • [138] Wang P, Liao Q, Zhang H. Polysaccharide-Based Double-Network Hydrogels: Polysaccharide Effect, Strengthening Mechanisms, and Applications. Biomacromolecules 2023.
  • [139] Guo B, Liang Y, Dong R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat. Protoc. 2023, 18(11): 3322-3354.
  • [140] Li L, Wu P, Yu F, Ma J. Double network hydrogels for energy/environmental applications: challenges and opportunities. J. Mater. Chem. A 2022, 10(17): 9215-9247.
  • [141] Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15(14): 1155-1158.
  • [142] Wan J, Liang Y, Wei X, Liang H, Chen XL. Chitosan-based double network hydrogel loading herbal small molecule for accelerating wound healing. Int. J. Biol. Macromol. 2023, 246: 125610.
  • [143] Yue X, Zhao S, Qiu M, Zhang J, Zhong G, et al. Physical dual-network photothermal antibacterial multifunctional hydrogel adhesive for wound healing of drug-resistant bacterial infections synthesized from natural polysaccharides. Carbohydr. Polym. 2023, 312: 120831.
  • [144] Qi L, Wang S, Chen L, Yu L, Guo X, et al. Bioinspired Multiscale Micro-/Nanofiber Network Design Enabling Extremely Compressible, Fatigue-Resistant, and Rapidly Shape-Recoverable Cryogels. ACS Nano 2023, 17(7): 6317-6329.
  • [145] Wang Y, Li J, Tang M, Peng C, Wang G, et al. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed. Pharmacother. 2023, 162: 114688.
  • [146] Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. Mater. Horiz. 2023, 10(9): 3325-3350.
  • [147] Brighenti R, Cosma MP. Mechanics of multi-stimuli temperature-responsive hydrogels. J. Mech. Phys. Solids 2022, 169: 105045.
  • [148] Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, et al. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front. Bioeng. Biotechnol. 2023, 11.
  • [149] Andrade F, Roca-Melendres MM, Durán-Lara EF, Rafael D, Schwartz S. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers 2021, 13(5): 1164.
  • [150] Boon-in S, Theerasilp M, Crespy D. Temperature-Responsive Double-Network Cooling Hydrogels. ACS Appl. Polym. Mater. 2023, 5(4): 2562-2574.
  • [151] Peng X, Peng Q, Wu M, Wang W, Gao Y, et al. A pH and Temperature Dual-Responsive Microgel-Embedded, Adhesive, and Tough Hydrogel for Drug Delivery and Wound Healing. ACS Appl. Mater. Interfaces 2023, 15(15): 19560-19573.
  • [152] Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine Modified PNIPAAm Nano-Hydrogel Serving as Thermo-Responsive System for Delivery of Cisplatin. Macromol. Res. 2022, 30(5): 314-324.
  • [153] Liu L, Rambarran T, Fitzpatrick S, Sheardown H. Phase separation control of PDMS/PNIPAAm IPNs and the effect on drug release. Polymer 2022, 259: 125323.
  • [154] Bellotti E, Fedorchak MV, Velankar S, Little SR. Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. J. Mater. Chem. B 2019, 7(8): 1276-1283.
  • [155] Mi L, Xue H, Li Y, Jiang S. A Thermoresponsive Antimicrobial Wound Dressing Hydrogel Based on a Cationic Betaine Ester. Adv. Funct. Mater. 2011, 21(21): 4028-4034.
  • [156] Mangione MR, Giacomazza D, Bulone D, Martorana V, San Biagio PL. Thermoreversible gelation of κ-Carrageenan: relation between conformational transition and aggregation. Biophys. Chem. 2003, 104(1): 95-105.
  • [157] Tari Ö, Kara S, Pekcan Ö. Critical Exponents of Kappa Carrageenan in the Coil-Helix and Helix-Coil Hysteresis Loops. Journal of Macromolecular Science, Part B 2009, 48(4): 812-822.
  • [158] Chen J, Xia X, Yan X, Wang W, Yang X, et al. Machine Learning-Enhanced Biomass Pressure Sensor with Embedded Wrinkle Structures Created by Surface Buckling. ACS Appl. Mater. Interfaces 2023.
  • [159] Tang Y, Sun X, Ma J, Yan Q. Mussel-inspired self-healing hydrogel based on gelatin and oxidized tannic acid for pH-responsive controlled drug release, Journal of Biomaterials Science. Polymer Edition 2023, 34(13): 1771-1792.
  • [160] Jeong JP, Kim K, Kim J, Kim Y, Jung S. New Polyvinyl Alcohol/Succinoglycan-Based Hydrogels for pH-Responsive Drug Delivery. Polymers 2023, 15(14): 3009.
  • [161] Zhang L, Bei Z, Li T, Qian Z. An injectable conductive hydrogel with dual responsive release of rosmarinic acid improves cardiac function and promotes repair after myocardial infarction. Bioact. Mater. 2023, 29: 132-150.
  • [162] Jiang J, Xu S, Ma H, Li C, Huang Z. Photoresponsive hydrogel-based soft robot: A review. Mater. Today Bio 2023, 20: 100657.
  • [163] Laurano R, Boffito M, Cassino C, Midei L, Pappalardo R, et al. Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry. Materials 2023, 16(5): 2024.
  • [164] Zhao D, Tang Q, Zhou Q, Peng K, Yang H, et al. A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)-b-polypeptide as a potential pharmaceuticals delivery carrier. Soft Matter 2018, 14(36): 7420-7428.
  • [165] Wang F, Wang B, Xu X, Wang X, Jiang P, et al. Photothermal-Responsive Intelligent Hybrid of Hierarchical Carbon Nanocages Encapsulated by Metal−Organic Hydrogels for Sensitized Photothermal Therapy. Adv. Healthcare Mater. 2023, n/a(n/a): 2300834.
  • [166] Tao C, Huang Y, Chen J, Peng Q, Nan K, et al. In situ forming mesoporous polydopamine nanocomposite thermogel for combined chemo-photothermal therapy of intraocular cancer. Colloid Interface Sci. Commun. 2023, 54: 100715.
  • [167] Zhang D, Liang Q, Zhou Z, Jia Y, Chen S, et al. Multifunctional bacterial cellulose photothermal aerogels with multi-bonded network assisted by carbon nanotube. Chem. Eng. J. 2023, 470: 144436.
  • [168] Li C, He X, Li Q, Lv M, Shen J, et al. A photothermal-response oxygen release platform based on a hydrogel for accelerating wound healing. NPG Asia Mater. 2023, 15(1): 3.
  • [169] Kang X, Guan P, Xiao C, Liu C, Guan Y, et al. Injectable Intrinsic Photothermal Hydrogel Bioadhesive with On-Demand Removability for Wound Closure and MRSA-Infected Wound Healing. Adv. Healthcare Mater. 2023, 12(13): 2203306.
  • [170] Liu D, Huyan C, Wang Z, Guo Z, Zhang X, et al. Conductive polymer based hydrogels and their application in wearable sensors: a review. Mater. Horiz. 2023, 10(8): 2800-2823.
  • [171] Li Q, Tian B, Liang J, Wu W. Functional conductive hydrogels: from performance to flexible sensor applications. Mater. Chem. Front. 2023, 7(15): 2925-2957.
  • [172] Nie L, Wei Q, Li J, Deng Y, He X, et al. Fabrication and desired properties of conductive hydrogel dressings for wound healing. RSC Adv. 2023, 13(13): 8502-8522.
  • [173] Lu J, Hu O, Hou L, Ye D, Weng S, et al. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Int. J. Biol. Macromol. 2022, 221: 1002-1011.
  • [174] Zhou Y, Fei X, Tian J, Xu L, Li Y. A ionic liquid enhanced conductive hydrogel for strain sensing applications. J. Colloid Interface Sci. 2022, 606: 192-203.
  • [175] Oruç S, Boztepe C, Zengin R. Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties. Mater. Today Commun. 2023, 36: 106540.
  • [176] Yang T, Yang M, Xu C, Yang K, Su Y, et al. PEDOT:PSS hydrogels with high conductivity and biocompatibility for in situ cell sensing. J. Mater. Chem. B 2023, 11(14): 3226-3235.
  • [177] Zhang Y, Li S, Gao Z, Bi D, Qu N, et al. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Carbohydr. Polym. 2023, 315: 120953.
  • [178] Yin MJ, Zhang Y, Yin Z, Zheng Q, Zhang AP. Micropatterned Elastic Gold-Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Adv. Mater. Technol. 2018, 3(7): 1800051.
  • [179] Peng F, Zhu W, Fang Y, Fu B, Chen H, et al. Ultralight and Highly Conductive Silver Nanowire Aerogels for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2023, 15(3): 4284-4293.
  • [180] Li X, Wang Y, Hou Y, Yin C, Yin Z. Graphene nanosheet/Cu nanowire composite aerogel with a thin PDMS coating for electrically conductive pressure sensing rubber. Composites, Part A 2021, 140: 106192.
  • [181] Xiong S, Ye S, Ni P, Zhong M, Shan J, et al. Polyvinyl-alcohol, chitosan and graphene-oxide composed conductive hydrogel for electrically controlled fluorescein sodium transdermal release. Carbohydr. Polym. 2023, 319: 121172.
  • [182] Xu T, Wang Y, Liu K, Zhao Q, Liang Q, et al. Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 2023, 6(3): 108.
  • [183] Lu Y, Wang Y, Zhang J, Hu X, Yang Z, et al. In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds. Acta Biomater. 2019, 89: 217-226.
  • [184] Wu C, Long L, Zhang Y, Xu Y, Lu Y, et al. Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment. JCR 2022, 344: 249-260.
  • [185] Xie C, Li Y, Guo X, Ding Y, Lu X, et al. Mussel-inspired adhesive hydrogels for local immunomodulation. Mater. Chem. Front. 2023, 7(5): 846-872.
  • [186] Xie C, Wang X, He H, Ding Y, Lu X. Mussel-Inspired Hydrogels for Self-Adhesive Bioelectronics. Adv. Funct. Mater. 2020, 30(25): 1909954.
  • [187] Wang Y, Zhao J, Wang X, Zhang R, Liang F. Mussel‐mimetic chitosan based injectable hydrogel with fast-crosslinking and water-resistance as tissue adhesive. Int. J. Adhes. Adhes. 2023, 124: 103382.
  • [188] Wang C, Gao X, Zhang F, Hu W, Gao Z, et al. Mussel Inspired Trigger-Detachable Adhesive Hydrogel. Small 2022, 18(21): 2200336.
  • [189] Wan B, Liu N, Zhang Z, Fang X, Ding Y, et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels. Carbohydr. Polym. 2023, 314: 120929.
  • [190] Huang H, Su Y, Wang C, Lei B, Song X, et al. Injectable Tissue-Adhesive Hydrogel for Photothermal/Chemodynamic Synergistic Antibacterial and Wound Healing Promotion. ACS Appl. Mater. Interfaces 2023, 15(2): 2714-2724.
  • [191] Wen N, Qian E, Kang Y. Development and characterization of laponite-enhanced tannic acid-based hydrogels. Mater. Lett. 2023, 339: 134116.
  • [192] He H, Qin Q, Xu F, Chen Y, Rao S, et al. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota–brain interactions in colitis. Sci. Adv. 2023, 9(21): eadf3887.
  • [193] Gong J, Ye C, Ran J, Xiong X, Fang X, et al. Polydopamine-Mediated Immunomodulatory Patch for Diabetic Periodontal Tissue Regeneration Assisted by Metformin-ZIF System. ACS Nano 2023, 17(17): 16573-16586.
  • [194] Gan D, Huang Z, Wang X, Xu D, Rao S, et al. Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox-active core–shell PEDOT@PZIF-71 system. Mater. Horiz. 2023, 10(6): 2169-2180.
  • [195] Kim YE, Jung HY, Park N, Kim J. Adhesive Composite Hydrogel Patch for Sustained Transdermal Drug Delivery To Treat Atopic Dermatitis. Chem. Mater. 2023, 35(3): 1209-1217.
  • [196] Wang L, Li Y, Lin L, Mu R, Pang J. Novel synthesis of mussel inspired and Fe3+ induced pH-sensitive hydrogels: Adhesion, injectable, shapeable, temperature properties, release behavior and rheological characterization. Carbohydr. Polym. 2020, 236: 116045.
  • [197] Li Y, Fu R, Zhu C, Fan D. An antibacterial bilayer hydrogel modified by tannic acid with oxidation resistance and adhesiveness to accelerate wound repair. Colloids Surf. B 2021, 205: 111869.
  • [198] Xu F, Zhang Q, Liu S, Zhao Y. Injectable, ROS-scavenging, drug-loaded hydrogel dressings of natural origin for oral postoperative care. Mater. Today Commun. 2023, 35: 105634.
  • [199] Yin H, Liu F, Abdiryim T, Liu X. Self-Healing Hydrogels: From Synthesis to Multiple Applications. ACS Mater. Lett. 2023, 5(7): 1787-1830.
  • [200] Shi Y, Wu B, Sun S, Wu P. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat. Commun. 2023, 14(1): 1370.
  • [201] Deng Y, Hussain I, Kang M, Li K, Yao F, et al. Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties. Chem. Eng. J. 2018, 353: 900-910.
  • [202] Li P, Zong H, Li G, Shi Z, Yu X, et al. Building a Poly(amino acid)/Chitosan-Based Self-Healing Hydrogel via Host–Guest Interaction for Cartilage Regeneration. ACS Biomater. Sci. Eng. 2023, 9(8): 4855-4866.
  • [203] Yasar M, Oktay B, Dal Yontem F. Haciosmanoglu Aldogan E, Kayaman Apohan N, Development of self-healing vanillin/PEI hydrogels for tissue engineering. Eur. Polym. J. 2023, 188: 111933.
  • [204] Guo J, Picchioni F, Bose RK. Electrically and thermally healable nanocomposites via one-step Diels-Alder reaction on carbon nanotubes. Polymer 2023, 283: 126260.
  • [205] Liu Y, Chang J, Mao J, Wang S, Guo Z, et al. Dual-network hydrogels based on dynamic imine and borate ester bonds with antibacterial and self-healing properties. Colloids Surf., B 2023, 230: 113528.
  • [206] Zhang T, Gao S, Yu J, He Y, Han X, et al. Preparation and performance of self-healing SBS modified bitumen based on dynamic disulfide bonds. Constr. Build. Mater. 2023, 397: 132394.
  • [207] Fan H, Wang J, Jin Z. Tough, Swelling-Resistant, Self-Healing, and Adhesive Dual-Cross-Linked Hydrogels Based on Polymer–Tannic Acid Multiple Hydrogen Bonds. Macromolecules 2018, 51(5): 1696-1705.
  • [208] Okay O. Self-Healing Hydrogels Formed via Hydrophobic Interactions, in: S. Seiffert (Ed.), Supramolecular Polymer Networks and Gels, Springer International Publishing. Cham 2015, pp. 101-142.
  • [209] Bayram C. Carboxymethyl chitosan-glycerol multi-aldehyde based self-healing hydrogel system. Int. J. Biol. Macromol. 2023, 239: 124334.
  • [210] Li L, Wang L, Luan X, Pang Y, Zhang K, et al. Adhesive injectable cellulose-based hydrogels with rapid self-healing and sustained drug release capability for promoting wound healing. Carbohydr. Polym. 2023, 320: 121235.
  • [211] Shin J, An S, Choi S, Shin M, Lee JS, et al. Ferritin Nanoshuttle for Long-Lasting Self-Healing of Phenolic Hydrogels. Nano Lett. 2023, 23(13): 5934-5942.
  • [212] Li DQ, Wang SY, Meng YJ, Guo ZW, Cheng MM, et al. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr. Polym. 2021, 268: 118244.
  • [213] Pan S, Zhang N, He X, Fang Z, Wu Y, et al. Poly(vinyl alcohol) Modified via the Hantzsch Reaction for Biosafe Antioxidant Self-Healing Hydrogel. ACS Macro Lett. 2023, 12(8): 1037-1044.
  • [214] Yang X, Zhang B, Li J, Shen M, Liu H, et al. Self-healing, self-adhesive, and stretchable conductive hydrogel for multifunctional sensor prepared by catechol modified nanocellulose stabilized poly(α-thioctic acid). Carbohydr. Polym. 2023, 313: 120813.
  • [215] Akhlaghi N, Najafpour-Darzi G. Thermosensitive injectable dual drug-loaded chitosan-based hybrid hydrogel for treatment of orthopedic implant infections. Carbohydr. Polym. 2023, 320: 121138.
  • [216] Lee M, Kim YS, Park J, Choe G, Lee S, et al. A paintable and adhesive hydrogel cardiac patch with sustained release of ANGPTL4 for infarcted heart repair. Bioact. Mater. 2024, 31: 395-407.
  • [217] Rong L, Liu Y, Fan Y, Xiao J, Su Y, et al. Injectable nano-composite hydrogels based on hyaluronic acid-chitosan derivatives for simultaneous photothermal-chemo therapy of cancer with anti-inflammatory capacity. Carbohydr. Polym. 2023, 310: 120721.
  • [218] Moradi L, Witek L, Vivekanand Nayak V, Cabrera Pereira A, Kim E, et al. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 2023, 301: 122289.
  • [219] Xu X, Zeng Y, Chen Z, Yu Y, Wang H, et al. Chitosan-based multifunctional hydrogel for sequential wound inflammation elimination, infection inhibition, and wound healing. Int. J. Biol. Macromol. 2023, 235: 123847.
  • [220] Li N, Liu W, Zheng X, Wang Q, Shen L, et al. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Res. 2023, 16(8): 11139-11148.
  • [221] Qiao L, Liang Y, Chen J, Huang Y, Alsareii SA, et al. Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact. Mater. 2023, 30: 129-141.
  • [222] Chen F, Qin J, Wu P, Gao W, Sun G. Glucose-Responsive Antioxidant Hydrogel Accelerates Diabetic Wound Healing. Adv. Healthcare Mater. 2023, 12(21): 2300074.
  • [223] Genç H, Cianciosi A, Lohse R, Stahlhut P, Groll J, et al. Adjusting Degree of Modification and Composition of gelAGE-Based Hydrogels Improves Long-Term Survival and Function of Primary Human Fibroblasts and Endothelial Cells in 3D Cultures. Biomacromolecules 2023, 24(3): 1497-1510.
  • [224] Han B, Cao C, Wang A, Zhao Y, Jin M, et al. Injectable Double-Network Hydrogel-Based Three-Dimensional Cell Culture Systems for Regenerating Dental Pulp, ACS Appl. Mater. Interfaces 2023, 15(6): 7821-7832.
  • [225] Wang X, Cui L, Hong J, Wang Z, Li J, et al. Incorporating GSE4 peptide in PEG/hyaluronic acid hydrogels to promote the alveolar epithelial differentiation of mesenchymal stem cells. Polymer 2023, 272: 125861.
  • [226] Zhu Y, Qin D, Liu J, Wu G, Wang H, et al. Chitin whiskers enhanced methacrylated hydroxybutyl chitosan hydrogels as anti-deformation scaffold for 3D cell culture, Carbohydr. Polym. 2023, 304: 120483.
  • [227] Zhu H, Wu X, Liu R, Zhao Y, Sun L. ECM-Inspired Hydrogels with ADSCs Encapsulation for Rheumatoid Arthritis Treatment. Adv. Sci. 2023, 10(9): 2206253.
  • [228] Cui L, Yang Z, Hong J, Zhu Z, Wang Z, et al. Injectable and Degradable POSS–Polyphosphate–Polysaccharide Hybrid Hydrogel Scaffold for Cartilage Regeneration. ACS Appl. Mater. Interfaces 2023, 15(17): 20625-20637.
  • [229] Qiu H, Deng J, Wei R, Wu X, Chen S, et al. A lubricant and adhesive hydrogel cross-linked from hyaluronic acid and chitosan for articular cartilage regeneration. Int. J. Biol. Macromol. 2023, 243: 125249.
  • [230] Qu Y, He S, Luo S, Zhao J, Liang R, et al. Photocrosslinkable, Injectable Locust Bean Gum Hydrogel Induces Chondrogenic Differentiation of Stem Cells for Cartilage Regeneration. Adv. Healthcare Mater. 2023, 12(18): 2203079.
  • [231] Luo C, Guo A, Zhao Y, Sun X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr. Polym. 2022, 286: 119268.
  • [232] Liang Y, He J, Guo B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15(8): 12687-12722.
  • [233] Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, et al. Adhesive hydrogels in osteoarthritis: from design to application. Mil. Med. Res. 2023, 10(1): 4.