Review
Open Access
Examining the evidence for exRNAs as communication molecules and emerging cancer biomarkers: a new therapeutic strategy
1 Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
2 School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
  • Volume
  • Citation
    Tang X, Gu C, Yang Y. Examining the evidence for exRNAs as communication molecules and emerging cancer biomarkers: a new therapeutic strategy. ExRNA 2023(2):0009, https://doi.org/10.55092/exrna20230009. 
  • DOI
    10.55092/exrna20230009
  • Copyright
    Copyright2023 by the authors. Published by ELSP.
Abstract

Extracellular RNAs (exRNAs), a unique form of RNA within the body, serve as carriers of genetic and metabolic information, providing real-time insights into cellular status. Their ability to act as biomarkers makes them valuable for disease diagnosis, treatment, and prognosis. exRNAs can be transported via extracellular vesicles, functioning as signaling mediators in cell-to-cell communication. Tumor cells exhibit heightened vesicle release compared to normal cells, thereby facilitating tumor progression. Leveraging their ease of detection, non-invasive molecular diagnostic technologies can be utilized. This short review presents an overview of exRNAs types, examines the testimony supporting the existence of functional exRNAs in mammals, especially traditional Chinese medicine (TCM)-derived dietary microRNAs with special functions in maintaining health and curing diseases like cancer. In addition, we briefly discuss novel approaches for tumor diagnosis and treatment, and the challenges in this field. We highlight the transformative potential of exRNAs as clinical biomarkers and novel cancer therapeutic strategies.

Keywords

exRNAs; intercellular communication; traditional Chinese medicine; dietary microRNAs; biomarker; cancer therapeutic strategy

Preview
References
  • [1] Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell. Biol. 2008, 10(12):1470–1476.
  • [2] Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 2007, 9(6):654–659.
  • [3] Freedman JE, Gerstein M, Mick E, Rozowsky J, Levy D, et al. Diverse human extracellular RNAs are widely detected in human plasma. Nat. Commun. 2016, 7:11106.
  • [4] Max KEA, Bertram K, Akat KM, Bogardus KA, Li J, et al. Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc. Natl. Acad. Sci. U.S.A. 2018, 115(23):E5334–E5343.
  • [5] Godoy PM, Bhakta NR, Barczak AJ, Cakmak H, Fisher S, et al. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep. 2018, 25(5):1346–1358.
  • [6] Das S, Ansel KM, Bitzer M, Breakefield XO, Charest A, et al. The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell 2019, 177(2):231–242.
  • [7] Zhou Z, Wu Q, Yan Z, Zheng H, Chen CJ, et al. Extracellular RNA in a single droplet of human serum reflects physiologic and disease states. Proc. Natl. Acad. Sci. U.S.A. 2019, 116(38):19200–19208.
  • [8] Palauqui JC, Elmayan T, Pollien JM, Vaucheret H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 1997,16(15):4738–4745.
  • [9] Voinnet O, Vain P, Angell S, Baulcombe DC. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 1998,95(2):177–187.
  • [10] Voinnet O, Baulcombe DC. Systemic signalling in gene silencing. Nature 1997, 389(6651):553.
  • [11] Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286(5441):950–952.
  • [12] Kaczor-Urbanowicz KE, Trivedi HM, Lima PO, Camargo PM, Giannobile WV, et al. Salivary exRNA biomarkers to detect gingivitis and monitor disease regression. J. Clin. Periodontol. 2018, 45(7):806–817.
  • [13] Chai P, Lebedenko CG, Flynn RA. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs. Annu. Rev. Genomics Hum. Genet. 2023, 24:85–107.
  • [14] Stroun M, Anker P, Beljanski M, Henri J, Lederrey C, et al. Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res. 1978, 38(10):3546–3554.
  • [15] Kolodny GM, Culp LA, Rosenthal LJ. Secretion of RNA by normal and transformed cells. Exp. Cell Res. 1972, 73(1):65–72.
  • [16] Schwarz DS, Hutvágner G, Haley B, Zamore PD. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell. 2002, 10(3):537–548.
  • [17] Stein P, Svoboda P, Anger M, Schultz RM. RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. Rna 2003, 9(2):187–192.
  • [18] Li W, Koutmou KS, Leahy DJ, Li M. Systemic RNA Interference Deficiency-1 (SID-1) Extracellular Domain Selectively Binds Long Double-stranded RNA and Is Required for RNA Transport by SID-1. J. Biol. Chem. 2015, 290(31):18904–18913.
  • [19] Nguyen TA, Smith BRC, Tate MD, Belz GT, Barrios MH, et al. SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity 2017, 47(3):498–509.e6.
  • [20] Duxbury MS, Ashley SW, Whang EE. RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem. Biophys. Res. Commun. 2005, 331(2):459–463.
  • [21] Elhassan MO, Christie J, Duxbury MS. Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance. J. Biol. Chem. 2012, 287(8):5267–5277.
  • [22] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30:255–289.
  • [23] Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009, 19(2):43–51.
  • [24] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200(4):373–383.
  • [25] Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 2014, 8(5):1432–1446.
  • [26] Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 2004, 279(13):12542–12550.
  • [27] Fabbri M, Paone A, Calore F, Galli R, Gaudio E, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(31):E2110–E2116.
  • [28] Benner SA, Allemann RK. The return of pancreatic ribonucleases. Trends Biochem. Sci. 1989, 14(10):396–397.
  • [29] Benner SA. Extracellular 'communicator RNA'. FEBS Lett. 1988, 233(2):225–228.
  • [30] Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U.S.A. 2011;108(12):5003–5008.
  • [31] Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011, 39(16):7223–7233.
  • [32] Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, et al. Reassessment of Exosome Composition. Cell 2019, 177(2):428–445.e18.
  • [33] Witwer KW, Théry C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell. Vesicles 2019, 8(1):1648167.
  • [34] Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell. Vesicles 2018, 7(1):1535750.
  • [35] Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol. Immunother. 2006, 55(7):808–818.
  • [36] Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006, 20(5):847–856.
  • [37] Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 2017, 8(1):1145.
  • [38] Li Y, Zheng Q, Bao C, Li S, Guo W, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015, 25(8):981–984.
  • [39] Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. PloS One 2015, 10(10):e0141214.
  • [40] Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 1983, 97(2):329–339.
  • [41] Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018, 20(3):332–343.
  • [42] Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, et al. Transfer of Functional Cargo in Exomeres. Cell Rep. 2019, 27(3):940–954.e6.
  • [43] Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13(4):423–433.
  • [44] Rimer JM, Lee J, Holley CL, Crowder RJ, Chen DL, et al. Long-range function of secreted small nucleolar RNAs that direct 2'-O-methylation. J. Biol. Chem. 2018, 293(34):13284–13296.
  • [45] Allen RM, Zhao S, Ramirez Solano MA, Zhu W, Michell DL, et al. Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J. Extracell. Vesicles 2018, 7(1):1506198.
  • [46] Abels ER, Maas SLN, Nieland L, Wei Z, Cheah PS, et al. Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Rep. 2019, 28(12):3105–3119.e7.
  • [47] Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 2014, 12(6):e1001874.
  • [48] Ridder K, Sevko A, Heide J, Dams M, Rupp AK, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology. 2015, 4(6):e1008371.
  • [49] Tosar JP, Cayota A, Eitan E, Halushka MK, Witwer KW. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J. Extracell. Vesicles 2017, 6(1):1272832.
  • [50] tom Dieck S, Kochen L, Hanus C, Heumüller M, Bartnik I, et al. Direct visualization of newly synthesized target proteins in situ. Nat. Methods. 2015, 12(5):411–414.
  • [51] Wang C, Han B, Zhou R, Zhuang X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 2016, 165(4):990–1001.
  • [52] Yan X, Hoek TA, Vale RD, Tanenbaum ME. Dynamics of Translation of Single mRNA Molecules In Vivo. Cell 2016, 165(4):976–989.
  • [53] Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 2015, 6:7029.
  • [54] de Jong OG, Murphy DE, Mäger I, Willms E, Garcia-Guerra A, et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat. Commun. 2020, 11(1):1113.
  • [55] Hinger SA, Cha DJ, Franklin JL, Higginbotham JN, Dou Y, et al. Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Rep. 2018, 25(3):715–725.e4.
  • [56] Chiang K, Shu J, Zempleni J, Cui J. Dietary MicroRNA Database (DMD): An Archive Database and Analytic Tool for Food-Borne microRNAs. PloS One 2015, 10(6):e0128089.
  • [57] Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing. J. Agric. Food Chem. 2018, 66(11):2749–27
  • [58] Liu YC, Chen WL, Kung WH, Huang HD. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genom. 2017, 18(Suppl 2):112.
  • [59] Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014, 144(10):1495–1500.
  • [60] Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by dietary microRNAs. Can. J. Physiol. Pharmacol. 2015, 93(12):1097–1102.
  • [61] Yu B, Yang Z, Li J, Minakhina S, Yang M, et al. Methylation as a crucial step in plant microRNA biogenesis. Science 2005, 307(5711):932–935.
  • [62] Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E, et al. Plant microRNAs as novel immunomodulatory agents. Sci. Rep. 2016, 6:25761.
  • [63] Olmi L, Pepe G, Helmer-Citterich M, Canini A, Gismondi A. Looking for Plant microRNAs in Human Blood Samples: Bioinformatics Evidence and Perspectives. Plant Foods Hum. Nutr. 2023, 78(2):399–406.
  • [64] Shi X, Yang H, Birchler JA. MicroRNAs play regulatory roles in genomic balance. Bioessays 2023, 45(2):e2200187.
  • [65] Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence 2010, 1(1):7.
  • [66] Melnik BC, John SM, Schmitz G. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J. Transl. Med. 2014, 12:43.
  • [67] Mlotshwa S, Pruss GJ, MacArthur JL, Endres MW, Davis C, et al. A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res. 2015, 25(4):521–524.
  • [68] Carver C, Bruemmer J, Coleman S, Landolt G, Hess T. Effects of corn supplementation on serum and muscle microRNA profiles in horses. Food Sci. Nutr. 2023, 11(6):2811–2822.
  • [69] Zhang L, Hou D, Chen X, Li D, Zhu L, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22(1):107–126.
  • [70] Pirrò S, Minutolo A, Galgani A, Potestà M, Colizzi V, et al. Bioinformatics Prediction and Experimental Validation of MicroRNAs Involved in Cross-Kingdom Interaction. J. Comput. Biol. 2016, 23(12):976–989.
  • [71] LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 2012, 12(2):187–199.
  • [72] Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P. Detection of Plant miRNAs Abundance in Human Breast Milk. Int. J. Mol. Sci. 2017, 19(1):37.
  • [73] Gu Y, Li M, Wang T, Liang Y, Zhong Z, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PloS One 2012, 7(8):e43691.
  • [74] Hou D, He F, Ma L, Cao M, Zhou Z, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J. Nutr. Biochem. 2018, 57:197–205.
  • [75] Zhou Z, Li X, Liu J, Dong L, Chen Q, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015, 25(1):39–49.
  • [76] Title AC, Denzler R, Stoffel M. Uptake and Function Studies of Maternal Milk-derived MicroRNAs. J. Biol. Chem. 2015, 290(39):23680–23691.
  • [77] Huang H, Davis CD, Wang TTY. Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice. Nutrients 2018;10(2): 215.
  • [78] Witwer KW, McAlexander MA, Queen SE, Adams RJ. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol. 2013, 10(7):1080–1086.
  • [79] Zhang Y, Liu D, Chen X, Li J, Li L, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010, 39(1):133–144.
  • [80] Luo Y, Wang P, Wang X, Wang Y, Mu Z, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci. Rep. 2017, 7(1):645.
  • [81] Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol. Nutr. Food Res. 2015, 59(10):1962–1972.
  • [82] Gu C, Yu X, Tang X, Gong L, Tan J, et al. Lycium barbarum L.-Derived miR162a Functions on Osteoporosis Through Directly Promoting Osteoblast Formation. Engineering 2023, In Press.
  • [83] Zhou W, Fong MY, Min Y, Somlo G, Liu L, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014, 25(4):501–515.
  • [84] Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 2015, 527(7576):100–104.
  • [85] Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U.S.A. 2008, 105(30):10513–10518.
  • [86] Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, et al. KRAS-dependent sorting of miRNA to exosomes. eLife 2015, 4:e07197.
  • [87] Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep. 2016, 6:37982.
  • [88] Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, et al. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J. Extracell. Vesicles. 2015, 4:26533.
  • [89] McKiernan J, Donovan MJ, O'Neill V, Bentink S, Noerholm M, et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol. 2016, 2(7):882–8
  • [90] Li F, Yoshizawa JM, Kim KM, Kanjanapangka J, Grogan TR, et al. Discovery and Validation of Salivary Extracellular RNA Biomarkers for Noninvasive Detection of Gastric Cancer. Clin. Chem. 2018, 64(10):1513–1521.
  • [91] Mithraprabhu S, Morley R, Khong T, Kalff A, Bergin K, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 2019, 33(8):2022–2033.
  • [92] Donovan MJ, Noerholm M, Bentink S, Belzer S, Skog J, et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 2015, 18(4):370–375.
  • [93] Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J. Transl. Med. 2012, 10:134.
  • [94] Rak J. Extracellular vesicles-biomarkers and effectors of the cellular interactome in cancer. Front. Pharmacol. 2013, 4:21.
  • [95] Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012, 72(19):4920–4930.
  • [96] Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29(4):341–345.
  • [97] Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol. Ther. 2013, 21(1):101–108.
  • [98] Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 2013, 21(1):185–191.
  • [99] Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, et al. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J. Biol. Chem. 2012, 287(2):1397–1405.
  • [100] Wang JH, Forterre AV, Zhao J, Frimannsson DO, Delcayre A, et al. Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation. Mol. Cancer Ther. 2018, 17(5):1133–1142.
  • [101] Pi F, Binzel DW, Lee TJ, Li Z, Sun M, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 2018, 13(1):82–89.
  • [102] Baldassari F, Zerbinati C, Galasso M, Corrà F, Minotti L, et al. Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors. Front. Genet. 2018, 9:174.
  • [103] Zeng A, Wei Z, Yan W, Yin J, Huang X, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett. 2018, 436:10–21.
  • [104] Chaudhary AK, Mondal G, Kumar V, Kattel K, Mahato RI. Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett. 2017, 402:1–8.