Review
Open Access
The potential role of exosomal microRNAs as biomarkers source for solid and hematological cancers: a narrative review
1 Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
2 Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
3 Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, 87100 Cosenza, Italy
4 Hematology Unit, Department of Onco-Hematology, A.O of Cosenza, 87100 Cosenza, Italy
  • Volume
  • Citation
    Zimbo AM, Nisticò N, Maisano D, Russo R, Gentile M, et al. The potential role of exosomal microRNAs as biomarkers source for solid and hematological cancers: a narrative review. ExRNA 2023(2):0006, https://doi.org/10.55092/exrna20230006. 
  • DOI
    10.55092/exrna20230006
  • Copyright
    Copyright2023 by the authors. Published by ELSP.
Abstract

Background and Objective: Exosomes are extracellular vesicles that regulate communication between cells and participate in various physiological and pathological processes. These nanovesicles transport proteins, lipids, and nucleic acids, including microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression. Exosomal miRNAs (exo-miRNAs) modulate many pathways involved in tumor progression, growth, metastasis, and angiogenesis. Therefore, in this review we investigated the role of exosomal miRNAs in both solid and hematological tumors, with the purpose of highlighting their potential role as disease biomarkers. Methods: Published peer-reviewed papers used as references for this narrative review were selected from the PubMed database using “exosomes”, “microRNA” and “cancers” as keywords. The time frame adopted in the bibliographic research covers an 11-year period, from January 2012 to January 2023. Key Content and Findings: This review explores the role of exosomal miRNAs as disease biomarkers. An excursus on exosomes and miRNAs is initially made to then illustrate the mechanisms of miRNAs sorting in exosomes. Exo-miRNAs can communicate with cells and can modulate their actions. Their half-life is extended thanks to the protection provided by exosomes. The role of exosomal miRNAs in different types of solid and hematological tumors is summarized highlighting the potential of disease staging and progression. Conclusions: All manuscripts studied suggest that exosomal miRNAs can be used as diagnostic and prognostic biomarkers iwn cancer. The lack of appropriate and usable biomarkers for cancer diagnosis and prognosis makes exosomal miRNAs good candidates to provide non-invasive information to guide disease management in different types of cancer.

Keywords

exosomes; microRNAs; exosomal miRNAs; cancer; biomarkers

Preview
References
  • [1]Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front. Cell Dev. Biol. 2018, 6:18.
  • [2]Hannafon BN, Ding WQ. Intercellular Communication by Exosome-Derived microRNAs in Cancer. Int. J. Mol. Sci. 2013, 14(7):14240–14269.
  • [3]Sun Z, Shi K, Yang S, Liu J, Zhou Q, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer. 2018, 17(1):147.
  • [4]Saleem T, Sumrin A, Bilal M, Bashir H, Khawar MB. Tumor-derived extracellular vesicles: Potential tool for cancer diagnosis, prognosis, and therapy. Saudi. J. Biol. Sci. 2022, 29(4):2063–2071.
  • [5]van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19(4):213–228.
  • [6]Subedi P, Schneider M, Philipp J, Azimzadeh O, Metzger F, et al. Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal. Biochem. 2019, 584:113390.
  • [7]Veziroglu EM, Mias GI. Characterizing Extracellular Vesicles and Their Diverse RNA Contents. Front. Genet. 2020, 11:700.
  • [8]Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8(7):727.
  • [9]Li J, He X, Deng Y, Yang C. An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids. Molecules 2019, 24(19):3516.
  • [10]Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell 1983, 33(3):967–978.
  • [11]Iaccino E, Mimmi S, Dattilo V, Marino F, Candeloro P, et al. Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes. Mol. Cancer 2017, 16(1):159.
  • [12]Ramasubramanian L, Kumar P, Wang A. Engineering Extracellular Vesicles as Nanotherapeutics for Regenerative Medicine. Biomolecules 2019, 10(1):48.
  • [13]Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11(7):3183–3195.
  • [14]Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, et al. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol. 2020, 13(1):152.
  • [15]Henne WM, Buchkovich NJ, Emr SD. The ESCRT Pathway. Dev. Cell 2011, 21(1):77–91.
  • [16]Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020, 367(6478):eaau6977.
  • [17]Lee C, Han J, Jung Y. Pathological Contribution of Extracellular Vesicles and Their MicroRNAs to Progression of Chronic Liver Disease. Biology 2022, 11(5):637.
  • [18]Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta Rev. Cancer. 2019, 1871(2):455–468.
  • [19]Xie S, Zhang Q, Jiang L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. Membranes 2022, 12(5):498.
  • [20]Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2021, 31(2):157–177.
  • [21]Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020, 10(8):3684–3707.
  • [22]Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 2014, 3(1):25011.
  • [23]Yu D, Li Y, Wang M, Gu J, Xu W, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer 2022, 21:56.
  • [24]Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M, et al. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J. Extracell. Vesicles 2016, 5:31655.
  • [25]Crossland RE, Norden J, Bibby LA, Davis J, Dickinson AM. Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J. Immunol. Methods 2016, 429:39–49.
  • [26]Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, et al. A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLOS ONE 2017, 12(1):e0170628.
  • [27]Ha M, Kim VN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15(8):509–524.
  • [28]Ho PTB, Clark IM, Le LTT. MicroRNA-Based Diagnosis and Therapy. Int. J. Mol. Sci. 2022, 23(13):7167.
  • [29]Du S, Ling H, Guo Z, Cao Q, Song C. Roles of exosomal miRNA in vascular aging. Pharmacol. Res. 2021, 165:105278.
  • [30]Manna I, De Benedittis S, Quattrone A, Maisano D, Iaccino E, Quattrone A. Exosomal miRNAs as Potential Diagnostic Biomarkers in Alzheimer’s Disease. Pharmaceuticals 2020, 13(9):243.
  • [31]Yu X, Odenthal M, Fries JWU. Exosomes as miRNA Carriers: Formation–Function–Future. Int. J. Mol. Sci. 2016, 17(12):2028.
  • [32]Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol. Cancer 2017, 16(1):148.
  • [33]Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, et al. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8(8):467–477.
  • [34]Wang X, Zhou Y, Gao Q, Ping D, Wang Y, et al. The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell Longev. 2020, 2020:e3232869.
  • [35]Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci. OA 2020, 6(4):FSO465.
  • [36]Zhu J, Lu K, Zhang N, Zhao Y, Ma Q, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif. Cells Nanomedicine Biotechnol. 2018, 46(8):1659–1670.
  • [37]Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, et al. Neutral Sphingomyelinase 2 (nSMase2)-dependent Exosomal Transfer of Angiogenic MicroRNAs Regulate Cancer Cell Metastasis*. J. Biol. Chem. 2013, 288(15):10849–10859.
  • [38]Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J. Cell Physiol. 2022, 237(4):2078–2094.
  • [39]Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012, 13:357.
  • [40]Cheng Q, Li X, Wang Y, Dong M, Zhan F, Liu J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol. Sin. 2018, 39(4):561–568.
  • [41]Rekker K, Saare M, Roost AM, Kubo AL, Zarovni N, et al. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem. 2014, 47(1):135–138.
  • [42]Coenen-Stass AML, Magen I, Brooks T, Ben-Dov IZ, Greensmith L, et al. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 2018, 15(8):1133–1145.
  • [43]Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, et al. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol. Cancer 2022, 21(1):54.
  • [44]Lin B, Jiang J, Jia J, Zhou X. Recent Advances in Exosomal miRNA Biosensing for Liquid Biopsy. Molecules 2022, 27(21):7145.
  • [45]Li C, Zhou T, Chen J, Li R, Chen H, et al. The role of Exosomal miRNAs in cancer. J. Transl. Med. 2022, 20:6.
  • [46]Wu J, Hu S, Zhang L, Xin J, Sun C, et al. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020, 10(10):4544–4556.
  • [47]Maisano D, Mimmi S, Russo R, Fioravanti A, Fiume G, et al. Uncovering the Exosomes Diversity: A Window of Opportunity for Tumor Progression Monitoring. Pharmaceuticals 2020, 13(8):180.
  • [48]Tay TKY, Tan PH. Liquid Biopsy in Breast Cancer: A Focused Review. Arch. Pathol. Lab. Med. 2020, 145(6):678–686.
  • [49]Whiteside TL, Diergaarde B, Hong CS. Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. Int. J. Mol. Sci. 2021, 22(12):6234.
  • [50]Ingenito F, Roscigno G, Affinito A, Nuzzo S, Scognamiglio I, et al. The Role of Exo-miRNAs in Cancer: A Focus on Therapeutic and Diagnostic Applications. Int. J. Mol. Sci. 2019, 20(19):4687.
  • [51]Moloudizargari M, Hekmatirad S, Mofarahe ZS, Asghari MH. Exosomal microRNA panels as biomarkers for hematological malignancies. Curr. Probl. Cancer 2021, 45(5):100726.
  • [52]Rodriguez-Abreu D, Bordoni A, Zucca E. Epidemiology of hematological malignancies. Ann. Oncol. 2007, 18:i3–i8.
  • [53]Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72(6):524–541.
  • [54]Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 2014, 5(20):9650–9663.
  • [55]Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 2015, 17(2):183–194.
  • [56]Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016, 18(1):90.
  • [57]Asgari R, Rezaie J. Differential Expression of Serum Exosomal miRNAs in Breast Cancer Patients and Healthy Controls. Adv. Pharm. Bull. 2022, 12(4):858–862.
  • [58]Santos JC, Lima N da S, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci. Rep. 2018, 8(1):829.
  • [59]Zhang Z, Zhang L, Yu G, Sun Z, Wang T, et al. Exosomal miR-1246 and miR-155 as predictive and prognostic biomarkers for trastuzumab-based therapy resistance in HER2-positive breast cancer. Cancer Chemother. Pharmacol. 2020, 86(6):761–772.
  • [60]Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016, 5(4):395–402.
  • [61]Menezes SV, Sahni S, Kovacevic Z, Richardson DR. Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. J. Biol. Chem. 2017, 292(31):12772.
  • [62]Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F, et al. The Role of micro RNAs in Breast Cancer Metastasis: Preclinical Validation and Potential Therapeutic Targets. Cancer Genomics Proteomics 2018, 15(1):17–39.
  • [63]Yuan X, Qian N, Ling S, Li Y, Sun W, et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 2021, 11(3):1429–1445.
  • [64]Li D, Wang J, Ma LJ, Yang HB, Jing JF, et al. Identification of serum exosomal miR-148a as a novel prognostic biomarker for breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24(13):7303–7309.
  • [65]Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int. J. Women's Health 2019, 11:287–299.
  • [66]Padda J, Khalid K, Khedr A, Patel V, Al-Ewaidat OA, et al. Exosome-Derived microRNA: Efficacy in Cancer. Cureus 2021, 13(8):e17441.
  • [67]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110(1):13–21.
  • [68]Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016, 7(13):16923–16935.
  • [69]Su YY, Sun L, Guo ZR, Li JC, Bai TT, et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J. Ovarian Res. 2019, 12:6.
  • [70]Ying X, Wu Q, Wu X, Zhu Q, Wang X, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 2016, 7(28):43076–43087.
  • [71]Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16(12):713–732.
  • [72]Shi Y, Zhuang Y, Zhang J, Chen M, Wu S. Four circulating exosomal miRNAs as novel potential biomarkers for the early diagnosis of human colorectal cancer. Tissue Cell 2021, 70:101499.
  • [73]Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, et al. Circulating Exosomal microRNAs as Biomarkers of Colon Cancer. PLOS ONE 2014, 9(4):e92921.
  • [74]Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer 2015, 113(2):275–281.
  • [75]Liu W, Yang D, Chen L, Liu Q, Wang W, et al. Plasma Exosomal miRNA-139-3p is a Novel Biomarker of Colorectal Cancer. J. Cancer 2020, 11(16):4899–4906.
  • [76]Zhang N, Zhang PP, Huang JJ, Wang ZY, Zhang ZH, et al. Reduced serum exosomal miR-874 expression predicts poor prognosis in colorectal cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24(2):664–672.
  • [77]Sun L, Liu X, Pan B, Hu X, Zhu Y, et al. Serum exosomal miR-122 as a potential diagnostic and prognostic biomarker of colorectal cancer with liver metastasis. J. Cancer 2020, 11(3):630–637.
  • [78]Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. The Lancet 2021, 398(10299):535–554.
  • [79]Masaoutis C, Mihailidou C, Tsourouflis G, Theocharis S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie 2018, 151:27–36.
  • [80]Cazzoli R, Buttitta F, Nicola MD, Malatesta S, Marchetti A, et al. microRNAs Derived from Circulating Exosomes as Noninvasive Biomarkers for Screening and Diagnosing Lung Cancer. J. Thorac. Oncol. 2013, 8(9):1156–1162.
  • [81]Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 2017, 36(34):4929–4942.
  • [82]Jin X, Chen Y, Chen H, Fei S, Chen D, et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non–Small Cell Lung Cancer Using Next-Generation Sequencing. Clin. Cancer Res. 2017, 23(17):5311–5319.
  • [83]Zhang Y, Xu H. Serum exosomal miR-378 upregulation is associated with poor prognosis in non-small-cell lung cancer patients. J. Clin. Lab. Anal. 2020, 34(6):e23237.
  • [84]Zhang Z, Tang Y, Song X, Xie L, Zhao S, et al. Tumor-Derived Exosomal miRNAs as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Front. Oncol. 2020, 10:560025
  • [85]Huang D, Qu D. Early diagnostic and prognostic value of serum exosomal miR-1246 in non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 2020, 13(7):1601–1607.
  • [86]Zheng Q, Ding H, Wang L, Yan Y, Wan Y, et al. Circulating Exosomal miR-96 as a Novel Biomarker for Radioresistant Non-Small-Cell Lung Cancer. J. Oncol. 2021, 2021:e5893981.
  • [87]Zhang L, Pan L, Xiang B, Zhu H, Wu Y, et al. Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma. Oncotarget 2016, 7(21):30876–30891.
  • [88]Wang X, He L, Huang X, Zhang S, Cao W, et al. Recent Progress of Exosomes in Multiple Myeloma: Pathogenesis, Diagnosis, Prognosis and Therapeutic Strategies. Cancers 2021, 13(7):1635.
  • [89]Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017, 129(17):2429–2436.
  • [90]Zhang Z, Li Y, Geng C, Wang H, Chen W. Potential Relationship between Clinical Significance and Serum Exosomal miRNAs in Patients with Multiple Myeloma. BioMed Res. Int. 2019, 2019:1575468.
  • [91]Al-Naeeb AB, Ajithkumar T, Behan S, Hodson DJ. Non-Hodgkin lymphoma. BMJ 2018, 362:k3204.
  • [92]Cao D, Cao X, Jiang Y, Xu J, Zheng Y, et al. Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B-cell lymphoma. Hematol. Oncol. 2022, 40(2):172–180.
  • [93]Feng Y, Zhong M, Zeng S, Wang L, Liu P, et al. Exosome-derived miRNAs as predictive biomarkers for diffuse large B-cell lymphoma chemotherapy resistance. Epigenomics 2019, 11(1):35–51.
  • [94]Xiao XB, Gu Y, Sun DL, Ding LY, Yuan XG, et al. Effect of rituximab combined with chemotherapy on the expression of serum exosome miR-451a in patients with diffuse large b-cell lymphoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23(4):1620–1625.
  • [95]Liu J, Han Y, Hu S, Cai Y, Yang J, et al. Circulating Exosomal MiR-107 Restrains Tumorigenesis in Diffuse Large B-Cell Lymphoma by Targeting 14-3-3η. Front. Cell Dev. Biol. 2021, 9:667800.
  • [96]Rinaldi F, Marchesi F, Palombi F, Pelosi A, Di Pace AL, et al. MiR-22, a serum predictor of poor outcome and therapy response in diffuse large B-cell lymphoma patients. Br. J. Haematol. 2021, 195(3):399–404.
  • [97]Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene. Ther. 2016, 23(10):327–332.
  • [98]Filip AA, Grenda A, Popek S, Koczkodaj D, Michalak-Wojnowska M, et al. Expression of circulating miRNAs associated with lymphocyte differentiation and activation in CLL—another piece in the puzzle. Ann. Hematol. 2017, 96(1):33–50.
  • [99]Hegde GV, Peterson KJ, Emanuel K, Mittal AK, Joshi AD, et al. Hedgehog-Induced Survival of B-Cell Chronic Lymphocytic Leukemia Cells in a Stromal Cell Microenvironment: A Potential New Therapeutic Target. Mol. Cancer Res. 2008, 6(12):1928–1936.
  • [100]Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, et al. Role of Chronic Lymphocytic Leukemia (CLL)-Derived Exosomes in Tumor Progression and Survival. Pharmaceuticals 2020, 13(9):244.
  • [101]Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 2015, 126(9):1106–1117.
  • [102]Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2013, 532(1):1–12.
  • [103]Bruns H, Böttcher M, Qorraj M, Fabri M, Jitschin S, et al. CLL-cell-mediated MDSC induction by exosomal miR-155 transfer is disrupted by vitamin D. Leukemia 2017, 31(4):985–988.
  • [104]Selcuklu SD, Donoghue MTA, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem. Soc. Trans. 2009, 37(4):918–925.
  • [105]Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 2020, 20(5):285–298.
  • [106]Mraz M, Chen L, Rassenti LZ, Ghia EM, Li H, et al. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood 2014, 124(1):84–95.
  • [107]Stamatopoulos B, Van Damme M, Crompot E, Dessars B, Housni HE, et al. Opposite Prognostic Significance of Cellular and Serum Circulating MicroRNA-150 in Patients with Chronic Lymphocytic Leukemia. Mol. Med. 2015, 21(1):123–133.
  • [108]Kollinerova S, Vassanelli S, Modriansky M. The role of miR-29 family members in malignant hematopoiesis. Biomed. Pap. 2014, 158(4):489–501.
  • [109]Yeh YY, Ozer HG, Lehman AM, Maddocks K, Yu L, et al. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 2015, 125(21):3297–3305.
  • [110]Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. Wiley Interdiscip. Rev. RNA 2021, 12(6):e1659.
  • [111]Castaño C, Kalko S, Novials A, Párrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. 2018, 115(48):12158–12163.
  • [112]Earle A, Bessonny M, Benito J, Huang K, Parker H, et al. Urinary Exosomal MicroRNAs as Biomarkers for Obesity-Associated Chronic Kidney Disease. J. Clin. Med. 2022, 11(18):5271.
  • [113]Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019, 15(12):731–743.
  • [114]Ortiz-Dosal A, Rodil-Garcia P, Salazar-Olivo LA. Circulating microRNAs in human obesity: a systematic review. Biomarkers 2019, 24(6): 499–509.
  • [115]Povero D, Eguchi A, Li H, Johnson CD, Papouchado BG, et al. Circulating Extracellular Vesicles with Specific Proteome and Liver MicroRNAs Are Potential Biomarkers for Liver Injury in Experimental Fatty Liver Disease. PLOS ONE 2014, 9(12):e113651.
  • [116]Yao ZY, Chen WB, Shao SS, Ma SZ, Yang CB, et al. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J. Zhejiang Univ. Sci. B 2018, 19(3):183–198.
  • [117]Szabo G. Exosomes and MicroRNA-223 at the Intersection of Inflammation and Fibrosis in NAFLD. Hepatology 2021, 74(1):5.
  • [118]Hou X, Yin S, Ren R, Liu S, Yong L, et al. Myeloid-Cell–Specific IL-6 Signaling Promotes MicroRNA-223-Enriched Exosome Production to Attenuate NAFLD-Associated Fibrosis. Hepatology 2021, 74(1):116.
  • [119]Devhare PB, Ray RB. Extracellular vesicles: Novel mediator for cell to cell communications in liver pathogenesis. Mol. Aspects Med. 2018, 60:115–122.
  • [120]Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs Are Absorbed in Biologically Meaningful Amounts from Nutritionally Relevant Doses of Cow Milk and Affect Gene Expression in Peripheral Blood Mononuclear Cells, HEK-293 Kidney Cell Cultures, and Mouse Livers. J. Nutr. 2014, 144(10):1495–1500.
  • [121]Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep. 2018, 8(1):11321.
  • [122]Melnik BC, Weiskirchen R, Schmitz G. Milk exosomal microRNAs: friend or foe?—a narrative review. ExRNA, 2022, 4: 22.
  • [123]Weil PP, Reincke S, Hirsch CA, Giachero F, Aydin M, et al. Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake, and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am. J. Clin. Nutr. 2023, 117(6):1195–1210.
  • [124]Mutai E, Ramer-Tait AE, Zempleni J. MicroRNAs in bovine milk exosomes are bioavailable in humans but do not elicit a robust pro-inflammatory cytokine response. ExRNA 2020, 2(1):2.
  • [125]Melnik BC, John SM, Carrera-Bastos P, Cordain L, Leitzmann C, et al. The Role of Cow’s Milk Consumption in Breast Cancer Initiation and Progression. Curr. Nutr. Rep. 2023, 12(1):122–140.
  • [126]Melnik BC, John SM, Carrera-Bastos P, Schmitz G. MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers 2020, 12(8):2111.
  • [127]Melnik BC, John SM, Weiskirchen R, Schmitz G. The endocrine and epigenetic impact of persistent cow milk consumption on prostate carcinogenesis. J. Transl. Genet. Genom. 2022, 6: 1–45.
  • [128]Melnik BC. Dairy consumption and hepatocellular carcinoma risk. Ann. Transl. Med. 2021, 9(8):736.
  • [129]Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int. J. Mol. Sci. 2023, 24(7):6102.
  • [130]Mimmi S, Zimbo AM, Rotundo S, Cione E, Nisticò N, et al. SARS CoV-2 spike protein-guided exosome isolation facilitates detection of potential miRNA biomarkers in COVID-19 infections. Clin. Chem. Lab. Med. 2023, 61(8): 1518–1524.