Review
Open Access
Conventional targeted drugs, RNA drugs, and radiopharmaceuticals: targeting from drivers to passengers
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
  • Volume
  • Citation
    Huang Y, Huang T, Fan S, Zhao Y. Conventional targeted drugs, RNA drugs, and radiopharmaceuticals: targeting from drivers to passengers. ExRNA 2024(2):0010, https://doi.org/10.55092/exrna20240010. 
  • DOI
    10.55092/exrna20240010
  • Copyright
    Copyright2024 by the authors. Published by ELSP.
Abstract

Targeted therapy targets the driver genes of tumor cells and effective inhibitors were developed to treat tumors by inhibiting tumor cell proliferation, interfering with the cell cycle, inducing tumor cell apoptosis, and inhibiting tumor angiogenesis. The emergence of RNA therapeutics provides more opportunities to target some driver genes which cannot be targeted with conventional drugs. However, the response of these targeted drugs in patients may be limited by their potential drug toxicity and tolerance. With the development of positron emission tomography (PET) and molecular biology, a number of passenger genes that do not have a driving role in tumor growth such as prostate-specific membrane antigen (PSMA) in prostate cancer, have been developed for widespread use in the diagnosis and treatment of cancer through radiolabeled molecular tracers. Radiopharmaceutical targets exhibit high specificity, which contributes to enhancing inhibitory activity in tumor but avoiding toxic effects on normal tissues. In addition, these radiopharmaceuticals have been continuously upgraded through chemical structure optimization such as regulating linkage lengths, hydrophobicity and charge, introducing albumin-binding entities and increasing the amphiphilicity of tracers enables radiopharmaceuticals to traverse cell and nuclear membranes, which have further improved diagnostic sensitivity/therapeutic specificity and reduced off-target toxicity.

Keywords

targeted drugs; RNA drugs; radiopharmaceuticals; driver genes; passenger genes

Preview
References
  • [1]Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 2020, 20(10):555–572.
  • [2]Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. ELife 2021, 10:e59629.
  • [3]Dang CV. A Time for MYC: Metabolism and Therapy. Cold Spring Harb. Symp. Quant. Biol. 2016, 81:79–83.
  • [4]Prior IA, Hood FE, Hartley JL. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020, 80(14):2969–2974.
  • [5]Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017, 170(6):1062–1078.
  • [6]O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 2016, 13(7):417–430.
  • [7]Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022, 36(5–6): 278–293.
  • [8]Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-Targeted Therapeutics. Cell Metab. 2018, 27(4): 714–739.
  • [9]Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 2023, 42(21):e114760.
  • [10]Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, et al. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov. 2021, 11(4):874–899.
  • [11]Wang F, Li Z, Feng X, Yang D, Lin M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2022, 25(1):11–26.
  • [12]Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022, 27(16):5231.
  • [13]Debnath S, Zhou N, McLaughlin M, Rice S, Pillai AK, et al. PSMA-Targeting Imaging and Theranostic Agents-Current Status and Future Perspective. Int. J. Mol. Sci. 2022, 23(3):1158.
  • [14]Beaulieu M-E, Castillo F, Soucek L. Structural and Biophysical Insights into the Function of the Intrinsically Disordered Myc Oncoprotein. Cells 2020, 9(4):1038.
  • [15]Carroll PA, Freie BW, Mathsyaraja H, Eisenman RN. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front. Med. 2018, 12(4):412–425.
  • [16]Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat. Rev. Cancer 2008, 8(12):976–990.
  • [17]Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002, 297(5578):102–104.
  • [18]Duffy MJ, O'Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat. Rev. 2021, 94:102154.
  • [19]Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 2014, 54(5):728–736.
  • [20]Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011, 146(6):904–917.
  • [21]Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011, 478(7370):524–528.
  • [22]Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011, 478(7370):529–533.
  • [23]Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 2017, 28(8):1776–1787.
  • [24]Massó-Vallés D, Soucek L. Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. Cells 2020, 9(4):883.
  • [25]Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI, et al. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 2011, 6(7):e22284.
  • [26]Demma MJ, Mapelli C, Sun A, Bodea S, Ruprecht B, et al. Omomyc Reveals New Mechanisms to Inhibit the MYC Oncogene. Mol. Cell. Biol. 2019, 39(22):e00248–00219.
  • [27]Barbacid M. ras genes. Annu. Rev. Biochem. 1987, 56:779–827.
  • [28]Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, et al. Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. Cancer Discov. 2016, 6(3):316–329.
  • [29]Canon J, Rex K, Saiki AY, Mohr C, Cooke K, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575(7781): 217–223.
  • [30]Sakamoto K, Kamada Y, Sameshima T, Yaguchi M, Niida A, et al. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochem. Biophys. Res. Commun. 2017, 484(3):605–611.
  • [31]Sakamoto K, Masutani T, Hirokawa T. Generation of KS-58 as the first K-Ras(G12D)-inhibitory peptide presenting anti-cancer activity in vivo. Sci. Rep. 2020, 10(1):21671.
  • [32]Ho CL, Wang JL, Lee CC, Cheng HY, Wen WC, et al. Antroquinonol blocks Ras and Rho signaling via the inhibition of protein isoprenyltransferase activity in cancer cells. Biomed. Pharmacother. 2014, 68(8): 1007–1014.
  • [33]Desai J, Gan H, Barrow C, Jameson M, Atkinson V, et al. Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients with Solid Tumors. J. Clin. Oncol. 2020, 38(19):2140–2150.
  • [34]Nangia V, Siddiqui FM, Caenepeel S, Timonina D, Bilton SJ, et al. Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Discov. 2018, 8(12):1598–1613.
  • [35]Sullivan RJ, Infante JR, Janku F, Wong DJL, Sosman JA, et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018, 8(2):184–195.
  • [36]Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 2008, 14(12):1351–1356.
  • [37]Cataldo VD, Gibbons DL, Pérez-Soler R, Quintás-Cardama A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med. 2011, 364(10):947–955.
  • [38]Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat. Rev. Clin. Oncol. 2024, 21(3):203–223.
  • [39]Ayati A, Moghimi S, Salarinejad S, Safavi M, Pouramiri B, et al. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem. 2020, 99:103811.
  • [40]Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15(2):81–94.
  • [41]Wang K, Du R, Myall NJ, Lewis WE, Uy N, et al. Real-World Efficacy and Safety of Amivantamab for EGFR-Mutant NSCLC. J. Thorac. Oncol. 2024, 19(3):500–506.
  • [42]Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 2021, 296:100641.
  • [43]Comer F, Mazor Y, Hurt E, Yang C, Fleming R, et al. Abstract 5736: AZD9592: An EGFR-cMET bispecific antibody-drug conjugate (ADC) targeting key oncogenic drivers in non-small-cell lung cancer (NSCLC) and beyond. Cancer Res. 2023, 83(7_Supplement):5736–5736.
  • [44]Knuehl C, Toleikis L, Dotterweich J, Ma J, Kumar S, et al. Abstract 5284: M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res. 2022, 82(12_Supplement):5284–5284.
  • [45]Wan W, Zhao S, Zhuo S, Zhang Y, Chen L, et al. Abstract 2642: BL-B01D1, a novel EGFR×HER3-targeting ADC, demonstrates robust anti-tumor efficacy in preclinical evaluation. Cancer Res. 2023, 83(7_Supplement):2642–2642.
  • [46]Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 2020, 20(8):471–480.
  • [47]Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 2018, 18(2):89–102.
  • [48]Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018, 25(1):133–143.
  • [49]Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 2014, 14(5):359–370.
  • [50]Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80(2):293–299.
  • [51]Seoane J, Le HV, Massagué J. Myc suppression of the p21(Cip1) CDK inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002, 419(6908):729–734.
  • [52]Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, et al. Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. ACS Med. Chem. Lett. 2013, 4(5):466–469.
  • [53]Berberich A, Kessler T, Thomé CM, Pusch S, Hielscher T, et al. Targeting Resistance against the MDM2 Inhibitor RG7388 in Glioblastoma Cells by the MEK Inhibitor Trametinib. Clin. Cancer Res. 2019, 25(1):253–265.
  • [54]Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 2019, 3(13):1939–1949.
  • [55]Jung J, Lee JS, Dickson MA, Schwartz GK, Le Cesne A, et al. TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat. Commun. 2016, 7:12609.
  • [56]Weisberg E, Halilovic E, Cooke VG, Nonami A, Ren T, et al. Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097. Mol. Cancer Ther. 2015, 14(10):2249–2259.
  • [57]Friedler A, Hansson LO, Veprintsev DB, Freund SMV, Rippin TM, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl. Acad. Sci. U. S. A. 2002, 99(2):937–942.
  • [58]Tal P, Eizenberger S, Cohen E, Goldfinger N, Pietrokovski S, et al. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides. Oncotarget 2016, 7(11):11817–11837.
  • [59]Warso MA, Richards JM, Mehta D, Christov K, Schaeffer C, et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br. J. Cancer 2013, 108(5):1061–1070.
  • [60]Hsiue EH-C, Wright KM, Douglass J, Hwang MS, Mog BJ, et al. Targeting a neoantigen derived from a common TP53 mutation. Science 2021, 371(6533):eabc8697.
  • [61]Bethuyne J, De Gieter S, Zwaenepoel O, Garcia-Pino A, Durinck K, et al. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture. Nucleic Acids Res. 2014, 42(20):12928–12938.
  • [62]Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016, 23(4):73–82.
  • [63]Lakshmikuttyamma A, Sun Y, Lu B, Undieh AS, Shoyele SA. Stable and efficient transfection of siRNA for mutated KRAS silencing using novel hybrid nanoparticles. Mol. Pharm. 2014, 11(12):4415–4424.
  • [64]Pecot CV, Wu SY, Bellister S, Filant J, Rupaimoole R, et al. Therapeutic silencing of KRAS using systemically delivered siRNAs. Mol. Cancer Ther. 2014, 13(12):2876–2885.
  • [65]Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546(7659):498–503.
  • [66]Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev. 2015, 87:90–103.
  • [67]Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl. Med. 2017, 9(394):eaal5253.
  • [68]Gao Q, Ouyang W, Kang B, Han X, Xiong Y, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics 2020, 10(11):5137–5153.
  • [69]Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchénio T, et al. Synthetic small inhibiting RNAs: Efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. U. S. A. 2002, 99(23):14849–14854.
  • [70]Ubby I, Krueger C, Rosato R, Qian W, Chang J, et al. Cancer therapeutic targeting using mutant–p53-specific siRNAs. Oncogene 2019, 38(18):3415–3427.
  • [71]Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533(7603):420–424.
  • [72]Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug Discov. 2023, 22(2):127–144.
  • [73]Kong N, Tao W, Ling X, Wang J, Xiao Y, et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 2019, 11(523):eaaw1565.
  • [74]Adesoye T, Tripathy D, Hunt KK, Keyomarsi K. Exploring novel frontiers: leveraging STAT3 signaling for advanced cancer therapeutics. Cancers (Basel) 2024, 16(3):492.
  • [75]Zou S, Tong Q, Liu B, Huang W, Tian Y, et al. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 2020, 19(1):145.
  • [76]Coleman N, Rodon J. Taking Aim at the Undruggable. Am. Soc. Clin. Oncol. Educ. Book 2021, (41):e145–e152.
  • [77]Ashizawa T, Iizuka A, Maeda C, Tanaka E, Kondou R, et al. Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on the tumor-infiltrating lymphocyte status. Immunol. Lett. 2019, 216:43–50.
  • [78]Esposito CL, Nuzzo S, Catuogno S, Romano S, de Nigris F, et al. STAT3 gene silencing by aptamer-siRNA chimera as selective therapeutic for glioblastoma. Mol. Ther. Nucleic Acids 2018, 10:398–411.
  • [79]Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, et al. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J. Immunother. Cancer 2018, 6(1):119.
  • [80]Bartolucci D, Pession A, Hrelia P, Tonelli R. Precision anti-cancer medicines by oligonucleotide therapeutics in clinical research targeting undruggable proteins and non-coding RNAs. Pharmaceutics 2022, 14(7):1453.
  • [81]Gagliardi M, Ashizawa AT. Making sense of antisense oligonucleotide therapeutics targeting Bcl-2. J. Natl. Cancer Inst. 2022, 14(1):97.
  • [82]Cannell Ian G, Kong Yi W, Bushell M. How do microRNAs regulate gene expression? Biochem. Soc. Trans. 2008, 36(6):1224–1231.
  • [83]van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. The Lancet. Oncology 2017, 18(10):1386–1396.
  • [84]Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, et al. Comparison of (68)Ga-labelled PSMA-11 and (11)C-choline in the detection of prostate cancer metastases by PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2017, 44(1):92–101.
  • [85]Hennrich U, Eder M. [(177)Lu]Lu-PSMA-617 (Pluvicto(TM)): The first FDA-approved radiotherapeutical for treatment of prostate cancer. Pharmaceuticals (Basel) 2022, 15(10):1292.
  • [86]Ambrosini V, Campana D, Tomassetti P, Fanti S. (68)Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur. J. Nucl. Med. Mol. Imaging 2012, 39 Suppl 1:S52–60.
  • [87]Jia AY, Kashani R, Zaorsky NG, Spratt DE, Kiess AP, et al. Lutetium-177 DOTATATE: A Practical Review. Prac. Radiat. Oncol. 2022, 12(4):305–311.
  • [88]Schmitt J, Schwenck J, Maurer A, Przybille M, Sonanini D, et al. Translational immunoPET imaging using a radiolabeled GD2-specific antibody in neuroblastoma. Theranostics 2022, 12(13):5615–5630.
  • [89]Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24(12):1852–1858.
  • [90]Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, et al. Imaging activated T cells predicts response to cancer vaccines. J. Clin. Invest. 2018, 128(6):2569–2580.
  • [91]Griessinger CM, Olafsen T, Mascioni A, Jiang ZK, Zamilpa C, et al. The PET-Tracer (89)Zr-Df-IAB22M2C Enables Monitoring of Intratumoral CD8 T-cell Infiltrates in Tumor-Bearing Humanized Mice after T-cell Bispecific Antibody Treatment. Cancer Res. 2020, 80(13):2903–2913.
  • [92]Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, et al. First-in-Humans Imaging with (89)Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting. J. Nucl. Med. 2020, 61(4):512–519.
  • [93]Loktev A, Lindner T, Mier W, Debus J, Altmann A, et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J. Nucl. Med. 2018, 59(9):1423–1429.
  • [94]Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, et al. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J. Nucl. Med. 2018, 59(9):1415–1422.
  • [95]Hathi DK, Jones EF. (68)Ga FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. Radiol. Imaging Cancer 2019, 1(1):e194003.
  • [96]Reischl G, Ehrlichmann W, Bieg C, Solbach C, Kumar P, et al. Preparation of the hypoxia imaging PET tracer [18F]FAZA: reaction parameters and automation. Appl. Radiat. Isot. 2005, 62(6):897–901.
  • [97]Krengli M, Ferrara E, Guaschino R, Puta E, Turri L, et al. 18F-FDG PET/CT as predictive and prognostic factor in esophageal cancer treated with combined modality treatment. Ann. Nucl. Med. 2022, 36(5):450–459.
  • [98]Yoon HJ, Pak K. Impact of Follow-up 18F-FDG PET on the Management in Patients With Lung Cancer: A Meta-analysis. Clin. Nucl. Med. 2021, 46(12):983–988.
  • [99]Soldevila-Lozano C, Sabate-Llobera A, Robles-Barba JJ, Mestres-Marti J, Cortes-Romera M. Mediastinal Recurrence of Uterine Cervix Cancer on 18F-FDG PET/CT. Clin. Nucl. Med. 2021, 46(3):233–235.
  • [100]Emonds KM, Swinnen JV, van Weerden WM, Vanderhoydonc F, Nuyts J, et al. Do androgens control the uptake of 18F-FDG, 11C-choline and 11C-acetate in human prostate cancer cell lines? Eur. J. Nucl. Med. Mol. Imaging 2011, 38(10):1842–1853.
  • [101]Liu H, Dang H, Ning J, Huang X, Wu Y, et al. [18F]-FDG PET/CT in a case of metastatic extrahepatic bile duct cancer from sigmoid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48(5):1675–1677.
  • [102]Stegmayr C, Stoffels G, Filss C, Heinzel A, Lohmann P, et al. Current trends in the use of O-(2-[(18)F]fluoroethyl)-L-tyrosine ([(18)F]FET) in neurooncology. Nucl. Med. Biol. 2021, 92:78–84.
  • [103]Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr. Radiopharm. 2019, 12(3):201–210.
  • [104]Lee BY, Han JA, Im JS, Morrone A, Johung K, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 2006, 5(2):187–195.
  • [105]Zanoni L, Broccoli A, Lambertini A, Pellegrini C, Stefoni V, et al. Role of 18F-FLT PET/CT in suspected recurrent or residual lymphoma: final results of a pilot prospective trial. Eur. J. Nucl. Med. Mol. Imaging 2019, 46(8):1661–1671.
  • [106]Bashir A, Vestergaard MB, Marner L, Larsen VA, Ziebell M, et al. PET imaging of meningioma with 18F-FLT: a predictor of tumour progression. Brain 2020, 143(11):3308–3317.
  • [107]Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 2016, 8(362):362ps317.
  • [108]Carney B, Kossatz S, Reiner T. Molecular Imaging of PARP. J. Nucl. Med. 2017, 58(7):1025–1030.
  • [109] Michel LS, Dyroff S, Brooks FJ, Spayd KJ, Lim S, et al. PET of Poly (ADP-Ribose) Polymerase Activity in Cancer: Preclinical Assessment and First In-Human Studies. Radiology 2017, 282(2):453–463.
  • [110]Schöder H, França PDS, Nakajima R, Burnazi E, Roberts S, et al. Safety and Feasibility of PARP1/2 Imaging with (18)F-PARPi in Patients with Head and Neck Cancer. Clin. Cancer Res. 2020, 26(13):3110–3116.
  • [111]Wen S, Wei Y, Zen C, Xiong W, Niu Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol. Cancer 2020, 19(1):171.
  • [112]Dai D, Yu J, Huang T, Li Y, Wang Z, et al. PET imaging of new target CDK19 in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50(11):3452–3464.
  • [113]Varasteh Z, Rosenström U, Velikyan I, Mitran B, Altai M, et al. The Effect of Mini-PEG-Based Spacer Length on Binding and Pharmacokinetic Properties of a 68Ga-Labeled NOTA-Conjugated Antagonistic Analog of Bombesin. Molecules 2014, 19(7):10455–10472.
  • [114]Kelly JM, Amor-Coarasa A, Ponnala S, Nikolopoulou A, Williams C, et al. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. J. Nucl. Med. 2019, 60(5):656–663.
  • [115]Wen X, Xu P, Shi M, Liu J, Zeng X, et al. Evans blue-modified radiolabeled fibroblast activation protein inhibitor as long-acting cancer therapeutics. Theranostics 2022, 12(1):422–433.
  • [116]Kelly J, Amor-Coarasa A, Ponnala S, Nikolopoulou A, Williams C, et al. Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to LNCaP tumors. Eur. J. Nucl. Med. Mol. Imaging 2018, 45(11): 1841–1851.
  • [117]Bao K, Lee JH, Kang H, Park GK, El Fakhri G, et al. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer. Chem. Commun. (Camb) 2017, 53(10):1611–1614.
  • [118]Varasteh Z, Rosenström U, Velikyan I, Mitran B, Altai M, et al. The effect of mini-PEG-based spacer length on binding and pharmacokinetic properties of a 68Ga-labeled NOTA-conjugated antagonistic analog of bombesin. Molecules (Basel) 2014, 19(7):10455–10472.
  • [119]Boinapally S, Alati S, Jiang Z, Yan Y, Lisok A, et al. Preclinical Evaluation of a New Series of Albumin-Binding 177Lu-Labeled PSMA-Based Low-Molecular-Weight Radiotherapeutics. Molecules (Basel) 2023, 28(16):6158.
  • [120]Zhang AX, Murelli RP, Barinka C, Michel J, Cocleaza A, et al. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132(36):12711–12716.
  • [121]Benešová M, Bauder-Wüst U, Schäfer M, Klika KD, Mier W, et al. Linker Modification Strategies to Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J. Med. Chem. 2016, 59(5):1761–1775.
  • [122]Kuo HT, Pan J, Zhang Z, Lau J, Merkens H, et al. Effects of Linker Modification on Tumor-to-Kidney Contrast of 68Ga-Labeled PSMA-Targeted Imaging Probes. Mol. Pharm. 2018, 15(8):3502–3511.
  • [123]Kuo HT, Lin KS, Zhang Z, Uribe CF, Merkens H, et al. 177Lu-Labeled Albumin-Binder–Conjugated PSMA-Targeting Agents with Extremely High Tumor Uptake and Enhanced Tumor-to-Kidney Absorbed Dose Ratio. J. Nucl. Med. 2021, 62(4):521–527.
  • [124]Huang SS, Wang X, Zhang Y, Doke A, DiFilippo FP. Improving the biodistribution of PSMA-targeting tracers with a highly negatively charged linker. Prostate 2014, 74(7):702–713.
  • [125]Benešová M, Umbricht CA, Schibli R, Müller C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol. Pharm. 2018, 15(3):934–946.
  • [126]Deberle LM, Benešová M, Umbricht CA, Borgna F, Büchler M, et al. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics 2020, 10(4):1678–1693.
  • [127]Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 2002, 277(38):35035–35043.
  • [128]Dennis MS, Jin H, Dugger D, Yang R, McFarland L, et al. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 2007, 67(1):254–261.
  • [129]Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J. Nucl. Med. 2013, 54(1):124–131.
  • [130]Dumelin CE, Trüssel S, Buller F, Trachsel E, Bootz F, et al. A portable albumin binder from a DNA-encoded chemical library. Angew Chem. Int. Ed. Engl. 2008, 47(17):3196–3201.
  • [131]Choy CJ, Ling X, Geruntho JJ, Beyer SK, Latoche JD, et al. 177Lu-Labeled Phosphoramidate-Based PSMA Inhibitors: The Effect of an Albumin Binder on Biodistribution and Therapeutic Efficacy in Prostate Tumor-Bearing Mice. Theranostics 2017, 7(7):1928–1939.
  • [132]Kuo HT, Merkens H, Zhang Z, Uribe CF, Lau J, et al. Enhancing Treatment Efficacy of 177Lu-PSMA-617 with the Conjugation of an Albumin-Binding Motif: Preclinical Dosimetry and Endoradiotherapy Studies. Mol. Pharm. 2018, 15(11):5183–5191.
  • [133]Reissig F, Zarschler K, Novy Z, Petrik M, Bendova K, et al. Modulating the pharmacokinetic profile of Actinium-225-labeled macropa-derived radioconjugates by dual targeting of PSMA and albumin. Theranostics 2022, 12(17):7203–7215.
  • [134]Jacobson O, Kiesewetter DO, Chen X. Albumin-Binding Evans Blue Derivatives for Diagnostic Imaging and Production of Long-Acting Therapeutics. Bioconjug. Chem. 2016, 27(10):2239–2247.
  • [135]Chen H, Jacobson O, Niu G, Weiss ID, Kiesewetter DO, et al. Novel "Add-On" Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents. J. Nucl. Med. 2017, 58(4):590–597.
  • [136]Tian R, Jacobson O, Niu G, Kiesewetter DO, Wang Z, et al. Evans Blue Attachment Enhances Somatostatin Receptor Subtype-2 Imaging and Radiotherapy. Theranostics 2018, 8(3):735–745.
  • [137]Wang Z, Tian R, Niu G, Ma Y, Lang L, et al. Single Low-Dose Injection of Evans Blue Modified PSMA-617 Radioligand Therapy Eliminates Prostate-Specific Membrane Antigen Positive Tumors. Bioconjug. Chem. 2018, 29(9):3213–3221.
  • [138]Lau J, Jacobson O, Niu G, Lin K-S, Bénard F, et al. Bench to Bedside: Albumin Binders for Improved Cancer Radioligand Therapies. Bioconjug. Chem. 2019, 30(3):487–502.
  • [139]Zhang P, Xu M, Ding J, Chen J, Zhang T, et al. Fatty acid-conjugated radiopharmaceuticals for fibroblast activation protein-targeted radiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2022, 49(6):1985–1996.
  • [140]Yang G, Gao H, Luo C, Zhao X, Luo Q, et al. Palmitic Acid-Conjugated Radiopharmaceutical for Integrin αvβ3-Targeted Radionuclide Therapy. Pharmaceutics 2022, 14(7):1327.
  • [141]Deberle LM, Tschan VJ, Borgna F, Sozzi-Guo F, Bernhardt P, et al. Albumin-Binding PSMA Radioligands: Impact of Minimal Structural Changes on the Tissue Distribution Profile. Molecules (Basel) 2020, 25(11):2542.
  • [142]Karimzadeh A, Soeiro P, Feuerecker B, Hecker CS, Knorr K, et al. Improved Quality of Life in Metastatic Castration-Resistant Prostate Cancer Patients Receiving Consecutive Cycles of (177)Lu-PSMA I&T. J. Nucl. Med. 2023, 64(11):1765–1771.
  • [143]Varga L, Besenyi Z, Paczona VR, Farkas I, Urbán S, et al. Prostate-specific membrane antigen-based imaging for stereotactic irradiation of low-volume progressive prostate cancer: a single-center experience. Front. Oncol. 2023, 13:1166665.
  • [144]McCutcheon JN, Giaccone G. Next-Generation Sequencing: Targeting Targeted Therapies. Clin. Cancer Res. 2015, 21(16):3584–3585.
  • [145]Keshava N, Toh TS, Yuan H, Yang B, Menden MP, et al. Defining subpopulations of differential drug response to reveal novel target populations. NPJ Syst. Biol. Appl. 2019, 5:36.
  • [146]Udagawa C, Zembutsu H. Pharmacogenetics for severe adverse drug reactions induced by molecular-targeted therapy. Cancer Sci. 2020, 111(10):3445–3457.
  • [147]Luo Y, Peng J, Ma J. Next Decade’s AI-Based Drug Development Features Tight Integration of Data and Computation. Health Data Sci. 2022, 2022:9816939.
  • [148]Ostro MJ, Giacomoni D, Lavelle DON, Paxton W, Dray S. Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. Nature 1978, 274(5674):921–923.
  • [149]Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 2022, 17(4):337–346.
  • [150]Liu C, Shi Q, Huang X, Koo S, Kong N, et al. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023, 23(8): 526–543.
  • [151]Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23(5):265–280.
  • [152]Smith ES, Whitty E, Yoo B, Moore A, Sempere LF, et al. Clinical Applications of Short Non-Coding RNA-Based Therapies in the Era of Precision Medicine. Cancers (Basel) 2022, 14(6):1588.
  • [153]Yu AM, Jian C, Yu AH, Tu MJ. RNA therapy: Are we using the right molecules? Pharmacol. Ther. 2019, 196:91–104.
  • [154]Traber GM, Yu A-M. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J. of Pharmacol. Exp. Ther. 2023, 384(1):133–154.
  • [155]Kim YK. RNA therapy. Exp. Mol. Med. 2023, 55(7):1281–1282.
  • [156]King AP, Lin FI, Escorcia FE. Why bother with alpha particles? Eur. J. Nucl. Med. Mol. Imaging 2021, 49(1):7–17.
  • [157]Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6(4):351–370.
  • [158]Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard JM, Gaudet V, Saboury B, et al. Role of Artificial Intelligence in Theranostics: Toward Routine Personalized Radiopharmaceutical Therapies. PET Clin. 2021, 16(4):627–641.
  • [159]Delso G, Cirillo D, Kaggie JD, Valencia A, Metser U, et al. How to Design AI-Driven Clinical Trials in Nuclear Medicine. Semin. Nucl. Med. 2021, 51(2): 112–119.