Review
Open Access
Biofunctional materials for dental disorders
1 Department of Pharmaceutics, S. A. Raja Pharmacy College, Vadakangulam, Tirunelveli, Tamil Nadu, India
2 Department of Pharmaceutics, Vivekanandha Pharmacy College for Women, Sankari, Tamil Nadu, India
3 Department of Periodontology, Rajas Dental College and Hospital, Tirunelveli, Tamil Nadu, India
Abstract

Dental treatments are currently based on conservative approaches, using inorganic materials and related appliances. Biomaterials including both natural/chemical play a vital role in dental tissue engineering. Biomaterials are utilized for fabricating frameworks known as scaffolds, matrices, or constructs to afford optimal dental tissue regeneration. The identification/utilization and development of appropriate biomaterials to optimize and regenerate these hybrid dental tissues is a greater challenge for dental researchers. Biomaterials are tailored to offer good interconnected porosity, large surface area, mechanical strengths, varying surface characterization, and different geometries for effective dental tissue regeneration. A literature search was made on articles, which are available in Pubmed, using key searches, such as biomaterials, tissue regeneration, tissue engineering, regenerative dentistry, periodontal regeneration, and hard/soft dental tissue regeneration. Papers were mostly searched from 2000 onward. In this review paper, we discussed about dental diseases, applications, and tissue engineering strategies in dentistry, biomaterials used in tissue engineering for tooth regeneration, bone regeneration, enamel regeneration, periodontal tissue regeneration, oral mucosa regeneration, salivary gland regeneration, and dentin/dental pulp regeneration.

Keywords

tissue regeneration; dental; biomaterials; tooth

Preview
References
  • [1]AlJehani YA. Risk Factors of Periodontal Disease: Review of the Literature. Int. J. Dent. 2014, 182513.
  • [2]Arigbede AO, Babatope BO, Bamidele MK. Periodontitis and systemic diseases: A literature review. J. Indian Soc. Periodontol. 2012, 16(4):487–491.
  • [3]Hämmerle CHF, Tarnow D. The etiology of hard- and soft-tissue deficiencies at dental implants: A narrative review. J. Clin. Periodontol. 2018, 45(20):S267–S277.
  • [4]Sowjanya NP, Rao N, Bhushan NS, Krishnan G. Versatility of the use of collagen membrane in oral cavity. J. Clin. Diagn. Res. 2016, 10(2):ZC30.
  • [5]Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J. Dent. 2014, 42(8):915–928.
  • [6]Angelova Volponi A, Zaugg LK, Neves V, Liu Y, Sharpe PT. Tooth Repair and Regeneration. Curr. Oral Health Rep. 2018, 5(4):295–303.
  • [7]Yamamoto H, Kim EJ, Cho SW, Jung HS. Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J. Electron Microsc. 2003, 52(6):559–566.
  • [8]Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater. 2015, 31(4):317–33
  • [9]Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010, 20(12):715–722.
  • [10]Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int. J. Oral Sci. 2019, 11(3):23.
  • [11]Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019, 12(4):568.
  • [12]Gao, X, Qin W, Wang P, Weir M, Reynolds M, et al. Nano-structured demineralized human dentin matrix to enhance bone and dental repair and regeneration. Appl. Sci. 2019, 9:1013.
  • [13]Xia Y, Chen H, Zhang F, Bao C, Weir MD, et al. Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine. 2018, 14(1):35–45.
  • [14]Abeer Barakat. 3D printing of hydrogels and nanoparticle containing bio-inks for bone tissue regeneration. 2019, pp. 1–8. Available: https://diposit.ub.edu/dspace/bitstream/2445/142760/1/Barakat-Abeer.pdf (accessed on 3 April 2024).
  • [15]Dockrill P. Scientists have developed a genius method that actually regenerates tooth enamel. 2019. Available: https://www.sciencealert.com/scientists-develop-world-first-liquid-that-regenerates-damaged-tooth-enamel (accessed on 3 April 2024).
  • [16]Shao C, Jin B, Mu Z, Lu H, Zhao Y, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci. Adv. 2019, 5(8):eaaw9569.
  • [17]Michaud DS, Fu Z, Shi J, Chung M. Periodontal disease, tooth loss, and cancer risk. Epidemiol. Rev. 2017, 39(1):49–58.
  • [18]Raju R, Oshima M, Inoue M, Morita T, Huijiao Y, et al. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci. Rep. 2020, 10(1):1656.
  • [19]Liu J, Mao JJ, Chen L. Epithelial-mesenchymal interactions as a working concept for oral mucosa regeneration. Tissue Eng. Part B Rev. 2011, 17(1):25–31.
  • [20]Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells. 2017, 35(1):97–105.
  • [21]Yoo C, Vines JB, Alexander G, Murdock K, Hwang P, et al. Adult stem cells and tissue engineering strategies for salivary gland regeneration: a review. Biomater. Res. 2014, 18(1):9.
  • [22]Nigam SK. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs? Stem Cells. Transl. Med. 2013, 2(12):993–1000.
  • [23]Lin CY, Chang FH, Chen CY, Huang CY, Hu FC, et al. Cell therapy for salivary gland regeneration. J. Dent. Res. 2011, 90:341–346.
  • [24]Kim JW, Kim JM, Choi ME, Kim SK, Kim YM, et al. Adipose-derived mesenchymal stem cells regenerate radioiodine-induced salivary gland damage in a murine model. Sci. Rep. 2019, 9(1):15752.
  • [25]Jung C, Kim S, Sun T, Cho YB, Song M. Pulp-dentin regeneration: current approaches and challenges. J. Tissue Eng. 2019, 10:2041731418819263.
  • [26]Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D'Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng. Part A. 2012, (1–2):176–84.
  • [27]Paz AG, Maghaireh H, Mangano FG. Stem Cells in Dentistry: Types of Intra-and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells Int. 2018, 2018:4313610.
  • [28]Tatullo M, Codispoti B, Paduano F, Nuzzolese M, Makeeva I. Strategic Tools in Regenerative and Translational Dentistry. Int. J. Mol. Sci. 2019, 20(8):1879.
  • [29]Nguyen PK, Gao W, Patel SD, Siddiqui Z, Weiner S, et al. Self-Assembly of a Dentinogenic Peptide Hydrogel. ACS Omega. 2018, 3(6):5980–5987.
  • [30]Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, et al. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials.2019, 12(11):1824.
  • [31]Alizadeh E. A review on the applications of tissue engineering in branches of dentistry. Int. J. Contemp. Dent. Med. Rev. 2017, 1–6.
  • [32]Kaushita B, Janani R, Niraikulam R, Ponesakki G, Numbi RK. Advances in neoteric modular tissue engineering strategies for regenerative dentistry. J. Sci.: Adv. Mater. Devices. 2022, 7(4): 100491.
  • [33]Griffin KH, Fok SW, Kent Leach J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen. Med. 2022, 7(1):70.
  • [34]Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem. Rev. 2020, 120(19):10608–10661.
  • [35]Xu X, Li Z, Ai X, Tang Y, Yang D, et al. Human three-dimensional dental pulp organoid model for toxicity screening of dental materials on dental pulp cells and tissue. Int Endod. J. 2022, 55(1):79–88.
  • [36]Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials. 2018, 180:52–66.
  • [37]Han Y, Koohi-Moghadam M, Chen Q, Zhang L, Chopra H, et al. HIF-1α stabilization boosts pulp regeneration by modulating cell metabolism. J. Dent. Res. 2022, 101(10):1214–1226.
  • [38]Chen Y, Ma Y, Yang X, Chen J, Yang B, et al. The application of pulp tissue derived-exosomes in pulp regeneration: a novel cell-homing approach. Int. J. Nanomedicine. 2022, 17:465–476.
  • [39]Nyirjesy SC, Heller M, von Windheim N, Gingras A, Kang SY, et al. The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3-dimensional printing in head and neck oncologic surgery: A review and future directions. Oral Oncol. 2022, 132:105976.
  • [40]Yu J, Park SA, Kim WD, Ha T, Xin YZ, et al. Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers. 2020, 12(12):2958.
  • [41]Abramowicz S, Crotts SJ, Hollister SJ, Goudy S. Tissue-engineered vascularized patient-specific temporomandibular joint reconstruction in a Yucatan pig model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 132(2):145–152.
  • [42]Carter SD, Costa PF, Vaquette C, Ivanovski S, Hutmacher DW, et al. Additive Biomanufacturing: An Advanced Approach for Periodontal Tissue Regeneration. Ann. Biomed. Eng. 2017, 45(1):12–22.
  • [43]Abedi N, Rajabi N, Kharaziha M, Nejatidanesh F, Tayebi L. Layered scaffolds in periodontal regeneration. J. Oral Biol. Craniofac. Res. 2022, 12(6):782–797.
  • [44]Lausch AJ, Chong LC, Uludag H, Sone ED. Multiphasic collagen scaffolds for engineered tissue interfaces. Adv. Funct. Mater. 2018, 28(48):1804730.
  • [45]Varoni EM, Vijayakumar S, Canciani E, Cochis A, De Nardo L, et al. Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration. J. Dent. Res. 2018, 97(3):303–311.
  • [46]Brennan MA, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv. Funct. Mater. 2020, 30:1909125
  • [47]Swanson WB, Gong T, Zhang Z, Eberle M, Niemann D, et al. Controlled release of odontogenic exosomes from a biodegradable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy. J. Control. Release. 2020, 324:679–694.
  • [48]Huang Y, Li M, Liu Q, Song L, Wang Q, et al. Small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells inhibit cell apoptosis and alveolar bone loss in periodontitis. Arch. Oral Biol. 2024, 162:105964.
  • [49]Sharma S, Srivastava D, Grover S, Sharma V. Biomaterials in tooth tissue engineering: a review. J. Clin. Diagn. Res. 2014, 8(1):309–315.
  • [50]Baino F, Novajra G, Brovarone CV. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioeng. Biotechnol. 2015, 3:202.
  • [51]Gobbi SJ, Reinke G, Gobbi VJ, Rocha Y, Sousa TP, et al. Biomaterial: concepts and basics properties. Eur. Int. J. Sci. Tech. 2020, 9(2):23–42.
  • [52]Ionescu AM, Chato-Astrain J, Cardona Perez JC, Campos F, Perez Gomez M, et al. Evaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials. J. Biomed. Opt. 2020, 25(5):1–16.
  • [53]Yadav R, Meena A, Patnaik A. Biomaterials for dental composite applications: A comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. Polym. Adv. Technol. 2022, 33(6): 1762–1781.
  • [54]Saitoh M, Masutani S, Kojima T, Saigoh M, Hirose H, et al. Thermal properties of dental materials—cavity liner and pulp capping agent. Dent. Mater. J. 2004, 23(3):399–405.
  • [55]Zhang X, Zhang Q, Meng X, Ye Y, Feng D, et al. Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymers. 2021, 13:2975.
  • [56]Van Noort R, Barbour M.E. Introduction to Dental Materials-E-Book. 4th ed. Netherlands: Elsevier Health Sciences, 2023.
  • [57]Zafar MS, Ahmed N. Nanoindentation and surface roughness profilometry of poly methyl methacrylate denture base materials. Technol. Health Care. 2014, 22(4):573–581.
  • [58]de Souza Costa CA, Teixeira HM, Lopes do Nascimento AB, Hebling J. Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J. Biomed. Mater. Res. B. Appl. Biomater. 2007, 81(1):175–184.
  • [59]De Meurechy N, Braem A, Mommaerts M. Biomaterials in temporomandibular joint replacement: current status and future perspectives—a narrative review. Int. J. Oral Maxillofac. Surg. 2017, 47:518–533.
  • [60]Barradas AM, Yuan H, van Blitterswijk C, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur. Cell. Mater. 2010, 21:407–429.
  • [61]Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10:S96–S101.
  • [62]Iftikhar S, Jahanzeb N, Saleem M, Ur Rehman S, Matinlinna JP, et al. The trends of dental biomaterials research and future directions: A mapping review. Saudi Dent J. 2021, 33(5):229–238.
  • [63]Niyibizi C, Eyre DR. Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur. J. Biochem. 1994, 224:943–950.
  • [64]Mahesh L, Kurtzman GM, Shukla S. Regeneration in periodontics: collagen-a review of its properties and applications in dentistry. Compend. Contin. Educ. Dent. 2015, 36(5):358–363.
  • [65]Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact. Mater. 2017, 3(1):129–138.
  • [66]Cho H, Jung HD, Kim BJ, Kim CH, Jung YS. Complication rates in patients using absorbable collagen sponges in third molar extraction sockets: A retrospective study. J. Korean Assoc. Oral Maxillofac. Surg. 2015, 41:26–29.
  • [67]Elango J, Lee JW, Wang S, Henrotin Y, De Val JEMS, et al. Evaluation of differentiated bone cells proliferation by blue shark skin collagen via biochemical for bone tissue engineering. Mar. Drugs. 2018, 16:350.
  • [68] Diogo GS, Lopez-Senra EL, Pirraco RP, Canadas RF, Fernandes EM, et al. Marine collagen/apatite composite scaffolds envisaging hard tissue applications. Mar. Drugs. 2018, 16:269.
  • [69]Irawan V, Sung T-C, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng. Regenerat. Med. 2018, 15:673.
  • [70]Ravikumar KM, Hwang W. Region-specific role of water in collagen unwinding and assembly. Proteins. 2008, 72(4):1320–1332.
  • [71]Yuan Z, Nie H, Wang S, Lee CH, Li A, et al. Biomaterial selection for tooth regeneration. Tissue Eng. Part B Rev. 2011, 17(5):373–388.
  • [72]Leite ML, Soares DG, Anovazzi G, Anselmi C, Hebling J, et al. Fibronectin-loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. J. Endod. 2021, 47(7):1110–1117.
  • [73]Chen X, Li N, Yang L, Liu J, Chen J, et al. Expression of collagen I, collagen III and MMP-1 on the tension side of distracted tooth using periodontal ligament distraction osteogenesis in beagle dogs. Arch. Oral Biol. 2014, 59(11):1217–1225.
  • [74]Honda M, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials. 2007, 28:680–689.
  • [75]Chia-Lai PJ, Orlowska A, Al-Maawi S, Dias A, Zhang Y, et al. Sugar-based collagen membrane cross-linking increases barrier capacity of membranes. Clin. Oral Investig. 2018, 22(4):1851–1863.
  • [76]Brum IS, Elias CN, de Carvalho JJ, Pires JL, Pereira MJ, et al. Properties of a bovine collagen type I membrane for guided bone regeneration applications". e-Polymers. 2021, 21(1):210–221.
  • [77]Pribadi N, Budiarti D, Kurniawan HJ, Widjiastuti I. The NF-kB and Collagen Type 1 Expression in Dental Pulp after Treated Calcium Hydroxide Combined with Propolis. Eur. J. Dent. 2021, 15(1):122–126.
  • [78]Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018, 109:273–286.
  • [79]Norowski Jr PA, Fujiwara T, Clem WC, Adatrow PC, Eckstein EC, et al. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility. J. Tissue Eng. Regenerat. Med. 2015, 9:577.
  • [80]Zhou D, Qi C, Chen YX, Zhu YJ, Sun TW, et al. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 2017, 12:2673.
  • [81]Sarath Kumar K, Kritika S, Karthikeyan NS, Sujatha V, Mahalaxmi S, et al. Development of cobalt-incorporated chitosan scaffold for regenerative potential in human dental pulp stem cells: An in vitro study. Int. J. Biol. Macromol. 2023, 253:126574.
  • [82]Gupta P, Sharma S, Jabin S, Jadoun S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int. J. Biol. Macromol. 2024, 254:127660.
  • [83]Chittratan P, Chalitangkoon J, Wongsariya K, Mathaweesansurn A, Detsri E, et al. New Chitosan-Grafted Thymol Coated on Gold Nanoparticles for Control of Cariogenic Bacteria in the Oral Cavity. ACS Omega. 2022, 7:26582–26590.
  • [84]Zhu Y, Zhang Y, Zhou Y. Application progress of modified chitosan and its composite biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2022, 23:6574.
  • [85]Ma W, Zhang S, Xie C, Wan X, Li X, et al. Preparation of High Mechanical Strength Chitosan Nanofiber/NanoSiO2/PVA Composite Scaffolds for Bone Tissue Engineering Using Sol-Gel Method. Polymers. 2022, 14(10):2083.
  • [86]Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, et al. Recent Advances in Chitosan-Based Applications—A Review. Materials. 2023, 16:2073.
  • [87]Hoveizi E, Naddaf H, Ahmadianfar S, Gutmann JL. Encapsulation of human endometrial stem cells in chitosan hydrogel containing titanium oxide nanoparticles for dental pulp repair and tissue regeneration in male Wistar rats. J. Biosci. Bioeng. 2023, 135(4):331–340.
  • [88]Ducret M, Montembault A, Josse J, Pasdeloup M, Celle A, et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent. Mater. 2019, 35(4):523–533.
  • [89]Khamverdi Z, Farhadian F, Khazaei S, Adabi M. Efficacy of chitosan-based chewing gum on reducing salivary S. mutans counts and salivary pH: a randomised clinical trial. Acta Odontol. Scand. 2021, 79(4):268–274.
  • [90]Qasim SB, Delaine-Smith RM, Fey T, Rawlinson A, Rehman IU. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomater. 2015, 23:317–328.
  • [91]Navidi G, Allahvirdinesbat M, Al-Molki SMM, Davaran S, Panahi PN, et al. Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering. Int. J. Biol. Macromol. 2021, 187:281–295.
  • [92]Park S, Kim H, Choi KS, Ji MK, Kim S, et al. Graphene–Chitosan Hybrid Dental Implants with Enhanced Antibacterial and Cell-Proliferation Properties. Appl. Sci. 2020, 10:4888.
  • [93]Resende AHM, Farias JM, Silva DDB, Rufino RD, Luna JM, et al. Application of biosurfactants and chitosan in toothpaste formulation. Colloids Surf. B Biointerfaces. 2019, 181:77–84.
  • [94]Ganss C, Von Hinckeldey J, Tolle A, Schulze K, Klimek J, et al. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J. Dent. 2012, 40:1036–1043.
  • [95]Nimbeni S.B, Nimbeni B.S, Divakar D.D. Role of Chitosan in Remineralization of Enamel and Dentin: A Systematic Review. Int. J. Clin. Pediatr. Dent. 2021, 14:562–568.
  • [96]López-Valverde N, Aragoneses J, López-Valverde A, Rodríguez C, Macedo de Sousa B, et al. Role of chitosan in titanium coatings. trends and new generations of coatings. Front. Bioeng. Biotechnol. 2022, 10:907589.
  • [97]Zamani D, Moztarzadeh F, Bizari D. Alginate-bioactive glass containing Zn and mg composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2019, 137:1256–1267.
  • [98]Sahoo DR, Biswal, T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021, 3:30.
  • [99]Xu M, Qin M, Cheng Y, Niu X, Kong J, et al. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr. Polym. 2021, 266:118128.
  • [100]Zeng Q, Han Y, Li H, Chang J. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J. Biomed. Mater. Res. B. 2014, 102(1):42–51.
  • [101]Leong JY, Lam WH, Ho KW, Voo WP, Lee MFX, et al. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuolog, 2016, 24:44–60.
  • [102]Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, et al. Alginate-based hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14:8.
  • [103]Wei Q, Zhou J, An Y, Li M, Zhang J, et al. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int. J. Biol. Macromol. 2023, 232:123450.
  • [104]Westhrin M, Xie M, Olderøy MØ, Sikorski P, Strand BL, et al. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS One. 2015, 10(3):e0120374.
  • [105]Farshidfar N, Iravani S, Varma RS. Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine. Mar. Drugs 2023, 21(3):189.
  • [106]Huang G, Liu SY, Wu JL, Qiu D, Dong YM. A novel bioactive glass-based root canal sealer in endodontics. J. Dent. Sci. 2021, 17:217–224
  • [107]Cervino G, Fiorillo L, Herford AS, Laino L, Troiano G, et al. Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Mar. Drugs. 2018, 17(1):18.
  • [108]Sancilio S, Gallorini M, Di Nisio C, Marsich E, Di Pietro R, et al. Alginate/hydroxyapatite‐based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation. Stem Cells Int. 2018, 2018(1):9643721
  • [109]Hyde TP, Craddock HL, Gray JC, Pavitt SH, Hulme C, et al. A randomised controlled trial of complete denture impression materials. J. Dent. 2014, 42:895–901.
  • [110]Liang X, Xie L, Zhang Q, Wang G, Zhang S, et al. Gelatin methacryloylalginate core-shell microcapsules as efficient delivery platforms for prevascularized microtissues in endodontic regeneration. Acta Biomater. 2022, 144:242–257.
  • [111]Zhang R, Xie L, Wu H, Yang T, Zhang Q, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020, 113:305–316.
  • [112]Lai WY, Lee TH, Chen JX, Ng HY, Huang TH, et al. Synergies of human umbilical vein endothelial cell-laden calcium silicate-activated gelatin methacrylate for accelerating 3d human dental pulp stem cell differentiation for endodontic regeneration. Polymers. 2021, 13(19):3301.
  • [113]Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, et al. Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2001, 19:424.
  • [114]Huang CC, Narayanan R, Warshawsky N, Ravindran S. Dual ECM Biomimetic scaffolds for dental pulp regenerative applications. Front. Physiol. 2018, 9:495.
  • [115]Kim BS, Shkembi F, Lee J. In vitro and in vivo evaluation of commercially available fibrin gel as a carrier of alendronate for bone tissue engineering. BioMed. Res. Int. 2017, 2017:6434169.
  • [116]Arshad S, Tehreem F, Rehab Khan M, Ahmed F, Marya A, et al. Platelet‐rich fibrin used in regenerative endodontics and dentistry: current uses, limitations, and future recommendations for application. Int. J. Dent. 2021, 2021(1):4514598.
  • [117]Keswani D, Pandey RK. Revascularization of an immature tooth with a necrotic pulp using platelet-rich fibrin: a case report. Int. Endod. J. 2013, 46(11):1096–1104.
  • [118]Simonpieri A, Del Corso M, Sammartino G, Dohan Ehrenfest DM. The relevance of Choukroun's platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part I: a new grafting protocol. Implant. Dent. 2009, 18(2):102–111.
  • [119]Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue. Eng. Part. B Rev. 2008, 14:199.
  • [120]Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH, et al. Second-generation Platelet Concentrate (Platelet-rich Fibrin) as a Scaffold in Regenerative Endodontics: A Case Series. J. Endod. 2017, 43(3):401–408.
  • [121]Sadeghinia A, Davaran S, Salehi R, Jamalpoor Z. Nano-hydroxy apatite/chitosan/gelatin scaffolds enriched by a combination of platelet-rich plasma and fibrin glue enhance proliferation and differentiation of seeded human dental pulp stem cells. Biomed. Pharmacother. 2019, 109:1924–1931.
  • [122]Li K, O'Dwyer R, Yang F, Cymerman J, Li J, et al. Enhancement of acellular biomineralization, dental pulp stem cell migration, and differentiation by hybrid fibrin gelatin scaffolds. Dent. Mater. 2023, 39(3):305–319.
  • [123]Qiu G, Huang M, Liu J, Ma T, Schneider A, et al. Human periodontal ligament stem cell encapsulation in alginate-fibrin-platelet lysate microbeads for dental and craniofacial regeneration. J. Dent. 2022, 124:104219.
  • [124]Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, et al. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019, 286(15):2883–2908.
  • [125]Ouasti S, Donno R, Cellesi F, Sherratt MJ, Terenghi G, et al. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials. 2011, 32:6456–6470.
  • [126]Ganesh N, Hanna C, Nair SV, Nair LS. Enzymatically cross-linked alginichyaluronic acid composite hydrogels as cell delivery vehicles. Int. J. Biol. Macromol. 2013, 55:289–294.
  • [127]Rajan P, Baramappa R, Rao NM, Pavaluri AK, P I, Rahaman SM. Hyaluronic Acid as an adjunct to scaling and root planing in chronic periodontitis. A randomized clinical trial. J. Clin. Diagn. Res. 2014, 8:ZC11–ZC14.
  • [128]Vennila K, Elanchezhiyan S, Ilavarasu S. Efficacy of 10% whole Azadirachta indica (neem) chip as an adjunct to scaling and root planning in chronic periodontitis: a clinical and microbiological study. Indian. J Dent. Res. 2016, 27:15–21.
  • [129]Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018, 10(7):701.
  • [130]Pratt RL. Hyaluronan and the fascial frontier. Int. J. Mol. Sci. 2021, 22(13):6845.
  • [131]Agarwal G, Vk K, Prasad SB, Bhaduri A, Jayaraman G. Biosynthesis of Hyaluronic acid polymer: dissecting the role of sub-structural elements of hyaluronan synthase. Sci. Rep. 2019, 9:12510.
  • [132]Jung H. Hyaluronidase: an overview of its properties, applications, and side effects. Arch. Plast. Surg. 2020, 47:297–300.
  • [133]Zheng Z, Patel M, Patel R. Hyaluronic acid-based materials for bone regeneration: a review. React. Funct. Polym. 2022, 171:105151.
  • [134]Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, et al. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules. 2021, 26(15):4429.
  • [135]Lambe S, Ghogare P, Sonawane S, Shinde L, Prashant D. Isolation, purification and characterization of hyaluronic acid: a concise review. J. Pharmacogn. Phytochem. 2021, 10:500–506.
  • [136]Bal A, Panda S, Mohanty R, Satpathy A, Nayak R, et al. Effectiveness of Hyaluronic Acid Gel Injection with and without PRGF for Management of Interdental Papillary Loss: A Randomized Clinical Trial. J. Funct. Biomater. 2023, 14(2):114.
  • [137]Astudillo-Ortiz E, Babo PS, Reis RL, Gomes ME. Evaluation of Injectable Hyaluronic Acid-Based Hydrogels for Endodontic Tissue Regeneration. Materials. 2021, 14(23):7325.
  • [138]Engström PE, Shi XQ, Tronje G, Larsson A, Welander U, et al. The effect of hyaluronan on bone and soft tissue and immune response in wound healing. J. Periodontol. 2001, 72(9):1192–200.
  • [139]Patil SC, Dhalkari CD, Indurkar MS. Hyaluronic acid: ray of hope for esthetically challenging black triangles: a case series. Contemp. Clin. Dent. 2020, 11:280–284.
  • [140]Mehta V, Kaçani G, Moaleem MMA, Almohammadi AA, Alwafi MM, et al. Hyaluronic acid: a new approach for the treatment of gingival recession—a systematic review. Int. J. Environ. Res. Public Health. 2022, 19(21):14330.
  • [141]Turgut Çankaya Z, Tamam E. An examination of the 2-year results obtained from hyaluronic acid filler injection for interdental papilla losses. Quintessence Int. 2020, 51(4):274–284.
  • [142]Shirakata Y, Nakamura T, Kawakami Y, Imafuji T, Shinohara Y, et al. Healing of buccal gingival recessions following treatment with coronally advanced flap alone or combined with a cross-linked hyaluronic acid gel. An experimental study in dogs. J. Clin. Periodontol. 2021, 48(4):570–580.
  • [143]Yilmaz N, Demirtas N, Kazancioglu HO, Bayer S, Acar AH, et al. The efficacy of hyaluronic acid in postextraction sockets of impacted third molars: a pilot study. Niger. J. Clin. Pract. 2017, 20:1626–1631.
  • [144]Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J. Biomed. Mater Res. B Appl. Biomater. 2010, 92(1):120–128.
  • [145]Ibraheem W, Jedaiba WH, Alnami AM, Hussain Baiti LA, Ali Manqari SM, et al. Efficacy of hyaluronic acid gel and spray in healing of extraction wound: A randomized controlled study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26:3444–3449.
  • [146]Schmidt J, Pilbauerova N, Soukup T, Suchankova-Kleplova T, Suchanek J. Low molecular weight hyaluronic acid effect on dental pulp stem cells in vitro. Biomolecules. 2021, 11(1):22.
  • [147]Zhu X, von Werdt L, Zappalà G, Sculean A, Eick S, et al. In vitro activity of hyaluronic acid and human serum on periodontal biofilm and periodontal ligament fibroblasts. Clin. Oral Investig. 2023, 27(9):5021–5029.
  • [148]Pilloni A, Annibali S, Dominici F, Di Paolo C, Papa M, et al. Evaluation of the efficacy of an hyaluronic acidbased biogel on periodontal clinical parameters. A randomizedcontrolled clinical pilot study. Ann. Stomatol. 2011, 2:3–9.
  • [149]Yang Y, Wang M, Yang S, Lin Y, Zhou Q, et al. Bioprinting of an osteocyte network for biomimetic mineralization. Biofabrication. 2020, 12(4):045013.
  • [150]Wang L, Wang N, Zhang W, Cheng X, Yan Z, et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target Ther. 2022, 7(1):48.
  • [151]Dang T, Süssmuth RD. Bioactive peptide natural products as lead structures for medicinal use. Acc. Chem. Res. 2017, 50(7):1566–1576.
  • [152]Hamley, IW. Small bioactive peptides for biomaterials design and therapeutics. Chem. Rev. 2017, 117(24):14015–14041.
  • [153]Bermúdez M, Hoz L, Montoya G, Nidome M, Perez-Soria A, et al. Bioactive Synthetic peptides for oral tissues regeneration. Front. Mater. 2021, 8:655495.
  • [154]Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today. 2015, 20:122–128.
  • [155]Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox-Transforming natural peptides into peptide therapeutics. Bioorg. Med. Chem. 2018, 26(10):2759–2765.
  • [156]Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov. Today. 2010, 15(1-2):40–56.
  • [157]Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20(4):309–325.
  • [158]La Manna S, Di Natale C, Florio D, Marasco D. Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int. J. Mol. Sci. 2018, 19(9):2714
  • [159]Zhang S. Discovery and design of self-assembling peptides. Interface Focus. 2017, 7(6):20170028.
  • [160]La Manna S, Di Natale C, Onesto V, Marasco D. Self-Assembling Peptides: From Design to Biomedical Applications. Int. J. Mol. Sci. 2021, 22(23):12662.
  • [161]Buzalaf MAR, Pessan JP. New Preventive Approaches Part I: Functional Peptides and Other Therapies to Prevent Tooth Demineralization. Monogr. Oral Sci. 2017, 26:88–96.
  • [162]Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res. 2020, 9:171.
  • [163]Dawasaz AA, Togoo RA, Mahmood Z, Azlina A, Thirumulu Ponnuraj K. Effectiveness of self-assembling peptide (p11-4) in dental hard tissue conditions: A comprehensive review. Polymers. 2022, 14(4):792.
  • [164]De Sousa JP, Carvalho RG, Barbosa-Martins LF, Torquato RJS, Mugnol KCU, et al. The self-assembling peptide P11-4 prevents collagen proteolysis in dentin. J. Dent. Res. 2019, 98(3):347–354.
  • [165]Xia K, Chen Z, Chen J, Xu H, Xu Y, et al. RGD-and VEGF-mimetic peptide epitope-functionalized self-assembling peptide hydrogels promote dentin-pulp complex regeneration. Int. J. Nanomedicine. 2020, 15:6631–6647.
  • [166]Lee D, Park KS, Yoon GJ, Lee HJ, Lee JY, et al. Identification of cell-penetrating osteogenic peptide from copine-7 protein and its delivery system for enhanced bone formation. J.Biomed. Mater. Res. A. 2019, 107(11):2392–2402.
  • [167]Liu H, Li W, Gao C, Kumagai Y, Blacher RW, et al. Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation. J. Dent. Res. 2004, 83(6):496–499.
  • [168]Yuca E, Xie SX, Song L, Boone K, Kamathewatta N, et al. Reconfigurable dual peptide tethered polymer system offers a synergistic solution for next generation dental adhesives. Int. J. Mol. Sci. 2021, 22(12):6552.
  • [169]Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K. Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling. 2010, 26(1):103–110.
  • [170]Zhang P, Wu S, Li J, Bu X, Dong X, et al. Dual-sensitive antibacterial peptide nanoparticles prevent dental caries. Theranostics. 2022, 12(10):4818–4833.
  • [171]Ye Q, Spencer P, Yuca E, Tamerler C. Engineered Peptide Repairs Defective Adhesive-Dentin Interface. Macromol. Mater. Eng. 2017, 302(5):1600487.
  • [172]Zhou L, Lai Y, Huang W, Huang S, Xu Z, et al. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. Colloids Surf. B Biointerfaces. 2015, 128:552-560.
  • [173]Chen X, Zhou XC, Liu S, Wu RF, Aparicio C, et al. In vivo osseointegration of dental implants with an antimicrobial peptide coating. J. Mater. Sci. Mater. Med. 2017, 28(5):76.
  • [174]Yang Y, Yang B, Li M, Wang Y, Yang X, et al. Salivary acquired pellicle-inspired DpSpSEEKC peptide for the restoration of demineralized tooth enamel. Biomed. Mater. 2017, 12(2):025007.
  • [175]Lee YS, Park YH, Lee DS, Seo YM, Lee JH, et al. Tubular dentin regeneration using a CPNE7-derived functional peptide. Materials. 2020, 13(20):4618.
  • [176]Gug HR, Park YH, Park SJ, Jang JY, Lee JH, et al. Novel strategy for dental caries by physiologic dentin regeneration with CPNE7 peptide. Arch. Oral Biol. 2022, 143:105531.
  • [177]Han S, Peng X, Ding L, Lu J, Liu Z, et al. TVH-19, a synthetic peptide, induces mineralization of dental pulp cells in vitro and formation of tertiary dentin in vivo. Biochem. Biophys. Res. Commun. 2021, 534:837–842.
  • [178]Zafar MS, Khurshid Z, Almas K. Oral tissue engineering progress and challenges. Tissue Eng. Regen. Med.2015, 12:387–397.
  • [179]Nanci A. Ten Cate's oral histology: development, structure, and function. St. Louis: Mosby. 2008.
  • [180]Linde A, Goldberg M. Dentinogenesis. Crit. Rev. Oral. Biol. Med. 1993, 4(5):679–728.
  • [181]Venkateshwaran K, Jacob Raja SA, Munish K, Sivakumar V. Functional biomaterials for corneal tissue regeneration. Biofunct Mater. 2024, 2 (1):1–22.
  • [182]Wu J, Huang Y, Yu H, Li K, Zhang S, et al. Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy. Neural Regen. Res. 2024, 19(3):680–686.
  • [183]Kim YH, Vijayavenkataraman S, Cidonio G. Biomaterials and scaffolds for tissue engineering and regenerative medicine. BMC Methods, 2024, 1(1):2.
  • [184]Andreu B, Eva KK, Elena F, Maxim L, Antonin B, et al. A novel bifunctional multilayered nanofibrous membrane combining polycaprolactone and poly (vinyl alcohol) enriched with platelet lysate for skin wound healing. Nanoscale, 2024, 16: 1924–1941.
  • [185]Luo X, Niu J, Su G, Zhou L, Zhang X, et al. Research progress of biomimetic materials in oral medicine. J. Biol. Eng. 2023, 17(1):72.
  • [186]Global Dental Biomaterials Market—Industry Trends and Forecast to 2031. 2023, (https://www.databridgemarketresearch.com/reports/global-dental-biomaterials-market) (accessed on 25 May 2024).