Review
Open Access
Challenges in osteochondral repair—a critical review
1 Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, India
2 Phytochemistry and phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Kerala, India
3 Dept. Clinical Immunology & Rheumatology, Christian Medical College, Vellore, Tamil Nadu 632004, India
Abstract

Osteochondral (OC) tissue repair is a significant challenge in managing osteoarthritis patients, as osteoarthritis (OA) progressively deteriorates both cartilage and subchondral bone, reducing quality of life. Restoring OC regions with complete structural and functional recovery is crucial. Despite availability of various OC constructs for OA joint repair, ensuring their stability and bone support remains problematic. The primary obstacle in attaining favourable patient outcome is designing constructs tailored to individual needs. This critical review addresses the various challenges in OC tissue repair, including (i) anatomical complexities, (ii) biological approaches to restoring the OC interface, and material selection, (iii) cell sources for reconstruction, and (iv) recreating a coordinated microenvironment. The findings arising out of this introspection, underscore the need for innovative strategies to overcome these OC tissue repair limitations, aiming at restoring OC unit structure and function in OA patients.

Keywords

osteochondral unit; osteoarthritis; stem cells; osteochondral construct; scaffolds

Preview
References
  • [1] Roseti L, Desando G, Cavallo C, Petretta M, Grigolo B. Articular Cartilage Regeneration in Osteoarthritis. Cells 2019, 8(11):1305.
  • [2] Cimmino MA, Parisi M, Moggiana GL, Maio T, Mela GS. Prevalence of self-reported peripheral joint pain and swelling in an Italian population: the Chiavari study. Clin. Exp. Rheumatol. 2001, 19(1):35–40.
  • [3] Pearle AD, Warren RF, Rodeo SA. Basic Science of Articular Cartilage and Osteoarthritis. Clin. Sports Med. 2005, 24(1):1–12.
  • [4] Osteoarthritis. Available: https://www.who.int/news-room/fact-sheets/detail/osteoarthritis (accessed on 17 Aug 2023).
  • [5] Long H, Liu Q, Yin H, Wang K, Diao N, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022, 74(7):1172–1183.
  • [6] Sancheti P, Shetty VD, Dhillon MS, Sprague SA, Bhandari M. India-Based Knee Osteoarthritis Evaluation (iKare): A Multi-Centre Cross-Sectional Study on the Management of Knee Pain and Early Osteoarthritis in India. Clin. Orthop. Surg. 2017, 9(3):286–294.
  • [7] Chopra A, Patil J, Billempelly V, Relwani J, Tandle HS. Prevalence of rheumatic diseases in a rural population in western India: a WHO-ILAR COPCORD Study. J. Assoc. Physicians India. 2001, 49:240–246.
  • [8] Pal CP, Singh P, Chaturvedi S, Pruthi KK, Vij A. Epidemiology of knee osteoarthritis in India and related factors. Indian J. Orthop. 2016, 50(5):518–522.
  • [9] Singh J. Effects of exercise rehabilitation programme on osteoarthritic knee with special reference to biochemical changes. 2010. Available: http://shodhganga.inflibnet.ac.in:8080/jspui/handle/10603/2893 (accessed on 31 May 2022).
  • [10] Vyas C, Poologasundarampillai G, Hoyland J, Bartolo P. 3D printing of biocomposites for osteochondral tissue engineering In Biomedical Composites, 2nd ed. St Louis: Elsevier, 2017, pp. 261–302.
  • [11] Di Luca A, Van Blitterswijk C, Moroni L. The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res. C Embryo Today Rev. 2015, 105(1):34–52.
  • [12] Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009, 1(6):461–468.
  • [13] Chang LR, Marston G, Martin A. Anatomy, Cartilage. 2022. Available: http://www.ncbi.nlm.nih.gov/books/NBK532964/ (accessed on 18 Jul 2022).
  • [14] Wang Z, Liu B, Lin K, Duan C, Wang C. The presence and degradation of nerve fibers in articular cartilage of neonatal rats. J. Orthop. Surg. Res. 2022, 17(1):331.
  • [15] OHara BP, Urban JP, Maroudas A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 1990, (7):536–539.
  • [16] Su Z, Zong Z, Deng J, Huang J, Liu G, et al. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022, 14(19):3984.
  • [17] Wang Y, Wei L, Zeng L, He D, Wei X. Nutrition and degeneration of articular cartilage. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21(8):1751–1762.
  • [18] Flowers SA, Zieba A, Örnros J, Jin C, Rolfson O, et al. Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci. Rep. 2017, 7:13149.
  • [19] Morouço P, Fernandes C, Lattanzi W. Challenges and Innovations in Osteochondral Regeneration: Insights from Biology and Inputs from Bioengineering toward the Optimization of Tissue Engineering Strategies. J. Funct. Biomater. 2021, 12(1):17.
  • [20] Watkins AR, Reesink HL. Lubricin in experimental and naturally occurring osteoarthritis: a systematic review. Osteoarthr. Cartil. 2020, 28(10):1303–1315.
  • [21] Jay GD, Waller KA. The biology of lubricin: near frictionless joint motion. Matrix Biol. 2014, 39:17–24.
  • [22] Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat. Cell Biol. 2014, 16(12):1157–67.
  • [23] Murata D, Fujimoto R, Nakayama K. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21(10):3589.
  • [24] Articular Cartilage Restoration, 2023. Available: https://www.orthoinfo.org/en/treatment/articular-cartilage-restoration/ (accessed on 17 Aug 2023).
  • [25] Silver FH, Glasgold AI. Cartilage wound healing. An overview. Otolaryngol. Clin. North Am. 1995, 28(5):847–864.
  • [26] Richter DL, Schenck RC, Wascher DC, Treme G. Knee Articular Cartilage Repair and Restoration Techniques. Sports Health Multidiscip. Approach. 2016, 8(2):153–160.
  • [27] Segaran N, Saini G, Mayer JL, Naidu S, Patel I, et al. Application of 3D Printing in Preoperative Planning. J. Clin. Med. 2021, 10(5):917.
  • [28] Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, et al. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals—Cross-Sectional Multispecialty Review. Int. J. Environ. Res. Public Health 2022, 19(6):3331.
  • [29] Bastawrous S, Wu L, Liacouras PC, Levin DB, Ahmed MT, et al. Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success. RadioGraphics 2022, 42(2):451–468.
  • [30] Bozkurt Y, Karayel E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol. 2021, 14:1430–1450.
  • [31] Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, et al. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 1986, 4(4):379–392.
  • [32] Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part B Rev. 2011, 17(4):213–227.
  • [33] Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 2001, 15(21):2865–2876.
  • [34] Li H, Li X, Jing X, Li M, Ren Y, et al. Hypoxia promotes maintenance of the chondrogenic phenotype in rat growth plate chondrocytes through the HIF-1α/YAP signaling pathway. Int. J. Mol. Med. 2018, 42(6):3181–3192.
  • [35] Pfander D, Gelse K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr. Opin. Rheumatol. 2007, 19(5):457–462.
  • [36] Eschweiler J, Horn N, Rath B, Betsch M, Baroncini A, et al. The Biomechanics of Cartilage—An Overview. Life 2021, 11(4):302.
  • [37] Dehghan-Baniani D, Mehrjou B, Chu PK, Lee WYW, Wu H. Recent Advances in “Functional Engineering of Articular Cartilage Zones by Polymeric Biomaterials Mediated with Physical, Mechanical, and Biological/Chemical Cues.” Adv. Healthc. Mater. 2023, 12(10):2202581.
  • [38] Zhu D, Tong X, Trinh P, Yang F. Mimicking Cartilage Tissue Zonal Organization by Engineering Tissue-Scale Gradient Hydrogels as 3D Cell Niche. Tissue Eng. Part A 2018, 24(1–2):1–10.
  • [39] Medvedeva EV, Grebenik EA, Gornostaeva SN, Telpuhov VI, Lychagin AV, et al. Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int. J. Mol. Sci. 2018, 19(8):2366.
  • [40] Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, et al. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest. Radiol. 2000, 35(10):581–588.
  • [41] Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res. 2005, 8(3):150–161.
  • [42] Pieretti EF, Leivas TP, Pillis MF, das Neves MDM. Failure Analysis of Metallic Orthopedic Implant for Total Knee Replacement. Mater. Sci. Forum 2020, 1012:471–476.
  • [43] Bass AR, Mehta B, Szymonifka J, Finik J, Lyman S, et al. Racial Disparities in Total Knee Replacement Failure As Related to Poverty. Arthritis Care Res. 2019, 71(11):1488–1494.
  • [44] Saccomanno MF, Sircana G, Masci G, Cazzato G, Florio M, et al. Allergy in total knee replacement surgery: Is it a real problem? World J. Orthop. 2019, 10(2):63–70.
  • [45] Melton J, Wilson A, Chapman-Sheath P, Cossey A. TruFit CB® bone plug: Chondral repair, scaffold design, surgical technique and early experiences. Expert Rev. Med. Devices 2010, 7:333–341.
  • [46] Verhaegen J, Clockaerts S, Van Osch GJVM, Somville J, Verdonk P, et al. TruFit Plug for Repair of Osteochondral Defects—Where Is the Evidence? Systematic Review of Literature. Cartilage 2015, 6(1):12–19.
  • [47] Alvis M, Lalor P, Brown M, Morgan R, Reddi A. Successful induction of new bone formation by Collagraft. In 46th Annual Meeting, Orthopaedic Research Society, Orlando, USA, 12-15 March 2000, pp. 0680.
  • [48] NeuColl’s Collagraft. Medtech Insight. 2001, Available: https://scrip.pharmaintelligence.informa.com/MT015615/NeuColls-Collagraft (accessed on 1 Jul 2023).
  • [49] Pei M, He F, Boyce BM, Kish VL. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthr. Cartil. 2009, 17(6):714–722.
  • [50] Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, et al. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 2011, 32(19):4393–4405.
  • [51] Getgood A, Henson F, Skelton C, Brooks R, Guehring H, et al. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J. Exp. Orthop. 2014, 1(1):13.
  • [52] Christensen BB. Autologous tissue transplantations for osteochondral repair. Dan. Med. J. 2016, 63(4):B5236.
  • [53] Frappier J, Stanish W, Brittberg M, Steinwachs M, Crowe L, et al. Economic evaluation of BST-CarGel as an adjunct to microfracture vs microfracture alone in knee cartilage surgery. J. Med. Econ. 2014, 17(4):266–278.
  • [54] Hoemann CD, Tran-Khanh N, Chevrier A, Chen G, Lascau-Coman V, et al. Chondroinduction Is the Main Cartilage Repair Response to Microfracture and Microfracture With BST-CarGel: Results as Shown by ICRS-II Histological Scoring and a Novel Zonal Collagen Type Scoring Method of Human Clinical Biopsy Specimens. Am. J. Sports Med. 2015, 43(10):2469–2480.
  • [55] Rhee C, Amar E, Glazebrook M, Coday C, Wong IH. Safety Profile and Short-term Outcomes of BST-CarGel as an Adjunct to Microfracture for the Treatment of Chondral Lesions of the Hip. Orthop. J. Sports Med. 2018, 6(8):2325967118789871.
  • [56] Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J. Bone Joint Surg. Am. 2013, 95(18):1640–1650.
  • [57] Steinwachs M, Cavalcanti N, Mauuva Venkatesh Reddy S, Werner C, Tschopp D, et al. Arthroscopic and open treatment of cartilage lesions with BST-CARGEL scaffold and microfracture: A cohort study of consecutive patients. Knee 2019, 26(1):174–184.
  • [58] McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med. Arthrosc. Rev. 2008, 16(4):196–201.
  • [59] Schreiner MM, Raudner M, Szomolanyi P, Ohel K, Ben-Zur L, et al. Chondral and Osteochondral Femoral Cartilage Lesions Treated with GelrinC: Significant Improvement of Radiological Outcome Over Time and Zonal Variation of the Repair Tissue Based on T2 Mapping at 24 Months. Cartilage 2021, 13(1 Suppl):604S-616S.
  • [60] Andereya S, Maus U, Gavenis K, Müller-Rath R, Miltner O, et al. First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee. Z. Orthop. Ihre Grenzgeb. 2006, 144(3):272–280.
  • [61] Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, et al. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur. J. Radiol. 2006, (1):3–8.
  • [62] Lange J, Follak N, Nowotny T, Merk H. Results of SaluCartilage implantation for stage IV chondral defects in the knee joint area. Unfallchirurg 2006, 109(3):193–199.
  • [63] FDA approves CartiHeal’s Implant for the Treatment of Cartilage and Osteochondral Defects. 2022, Available: https://www.cartiheal.com/news/bioventus-makes-15-million-equity-investment-in-cartiheal-with-an-agreed-option-structure-to-acquire-company-upon-milestone-achievements-https-ca-finance-yahoo-com-news-bioventus-makes-15-million-2-3/ (accessed on 1 July 2023).
  • [64] The U.S. Department of Health and Human Services, National Institutes of Health, National Library of Medicine, and National Center for Biotechnology Information. Agili-CTM Implant Performance Evaluation-ClinicalTrials.gov. Available: https://clinicaltrials.gov/ct2/show/NCT03299959 (accessed on 1 Jul 2023).
  • [65] Lepidi, S, Grego, F, Vindigni, V, Zavan, B, Tonello C, et al. Hyaluronan Biodegradable Scaffold for Small-caliber Artery Grafting: Preliminary Results in an Animal Model. Eur. J. Vasc. Endovasc. Surg. 2006, 32(4):411–417.
  • [66] Valentini, RF, Kim HD. Hyaluronan based biodegradable scaffolds for tissue repair. U.S. Patent No. 5,939,323. 17 Aug 1999.
  • [67] Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures Ivana Gadjanski, Gordana Vunjak Novakovic. Expert Opin. Biol. Ther. 2015, 15(11):1583–1599.
  • [68] Jacob G, Shimomura K, Nakamura N. Osteochondral Injury, Management and Tissue Engineering Approaches. Front. Cell Dev. Biol. 2020, 8:5808
  • [69] Fan X, Wu X, Crawford R, Xiao Y, Prasadam I. Macro, Micro, and Molecular. Changes of the Osteochondral Interface in Osteoarthritis Development. Front. Cell Dev. Biol. 2021, 9:659654.
  • [70] Williams GM, Chan EF, Temple-Wong MM, Bae WC, Masuda K, et al. Shape, Loading, and Motion in the Bioengineering Design, Fabrication, and Testing of Personalized Synovial Joints. J. Biomech. 2010, 43(1):156.
  • [71] Brown TD, Elkins JM, Pedersen DR, Callaghan JJ. Impingement and Dislocation in Total HIP Arthroplasty: Mechanisms and Consequences. Iowa Orthop. J. 2014, 34:1–15.
  • [72] Berthold DP, Muench LN, Dyrna F, Mazzocca AD, Garvin P, et al. Current concepts in acromioclavicular joint (AC) instability—a proposed treatment algorithm for acute and chronic AC-joint surgery. BMC Musculoskelet. Disord. 2022, 23(1):1078.
  • [73] Chen L, Zheng JJY, Li G, Yuan J, Ebert JR, et al. Pathogenesis and clinical management of obesity-related knee osteoarthritis: Impact of mechanical loading. J. Orthop. Transl. 2020, 24:66–75.
  • [74] Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front. Bioeng. Biotechnol. 2021, 9:603408.
  • [75] Demott CJ, Jones MR, Chesney CD, Grunlan MA. Adhesive Hydrogel Building Blocks to Reconstruct Complex Cartilage Tissues. ACS Biomater. Sci. Eng. 2023, 9(4):1952–1960.
  • [76] Zhao W, Zhang Y, Zhao X, Sheng W, Ma S, et al. Mechanically Robust Lubricating Hydrogels Beyond the Natural Cartilage as Compliant Artificial Joint Coating. Adv. Sci. (Weinh). 2024, 11(31):e2401000.
  • [77] Xiang C, Guo Z, Zhang Q, Wang Z, Li X, et al. Physically crosslinked poly(vinyl alcohol)-based hydrogels for cartilage tissue engineering. Mater. Des. 2024, 243:113048.
  • [78] Yu T, Zhang L, Dou X, Bai R, Wang H, et al. Mechanically Robust Hydrogels Facilitating Bone Regeneration through Epigenetic Modulation. Adv. Sci. 2022, 9(32):2203734.
  • [79] Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: Present status. Arthrosc. J. Arthrosc. Relat. Surg. 1986, 2(1):54–69.
  • [80] Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003, 19(5):477–484.
  • [81] Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994, 331(14):889–895.
  • [82] Pill K, Hofmann S, Redl H, Holnthoner W. Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regen. 2015, 4:8.
  • [83] Brittberg M. Bone Marrow Stimulation Techniques for Cartilage Repair In Lower Extremity Joint Preservation. 1st ed. New York: Springer Cham, 2021, pp. 37–45.
  • [84] Martin R, Jakob RP. Review of K.H. Pridie (1959) on “A method of resurfacing osteoarthritic knee joints”. J. ISAKOS. 2022, 7(1):39–46.
  • [85] Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. 2001, (391 Suppl):S362–369.
  • [86] Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical Efficacy of the Microfracture Technique for Articular Cartilage Repair in the Knee: An Evidence-Based Systematic Analysis. Am. J. Sports Med. 2009, 37(10):2053–2063.
  • [87] Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint—A golden standard? J. Clin. Orthop. Trauma. 2016, 7(3):145–152.
  • [88] Garretson RB, Katolik LI, Verma N, Beck PR, Bach BR, et al. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am. J. Sports Med. 2004, 32(4):967–974.
  • [89] Jakob RP, Franz T, Gautier E, Mainil-Varlet P. Autologous osteochondral grafting in the knee: indication, results, and reflections. Clin. Orthop. 2002, (401):170–184.
  • [90] Haber DB, Logan CA, Murphy CP, Sanchez A, LaPrade RF, et al. Osteochondral allograft transplantation for the knee: post-operative rehabilitation. Int. J. Sports Phys. Ther. 2019, 14(3):487–499.
  • [91] Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthrosc. J. Arthrosc. Relat. Surg. 2005, 21(9):1066–1075.
  • [92] Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J. Bone Joint Surg. Am. 2007, 89(10):2105–2112.
  • [93] LaPrade RF, Botker J, Herzog M, Agel J. Refrigerated osteoarticular allografts to treat articular cartilage defects of the femoral condyles. A prospective outcomes study. J. Bone Joint Surg. Am. 2009, 91(4):805–811.
  • [94] Levy YD, Görtz S, Pulido PA, McCauley JC, Bugbee WD. Do Fresh Osteochondral Allografts Successfully Treat Femoral Condyle Lesions? Clin. Orthop. 2013 471(1):231–237.
  • [95] Görtz S, Bugbee WD. Allografts in articular cartilage repair. Instr. Course Lect. 2007, 56:469–480.
  • [96] Clar C, Cummins E, McIntyre L, Thomas S, Lamb J, et al. Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation. Health Technol. Assess. 2005, 9(47):3–82.
  • [97] Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am. J. Sports Med. 2010, 38(6):1117–1124.
  • [98] Haleem A, Chu C. Advances in Tissue Engineering Techniques for Articular Cartilage Repair. Oper. Tech. Orthop. 2010, 20(2):76–89.
  • [99] Cogan CJ, Friedman J, You J, Zhang AL, Feeley BT, et al. Prior Bone Marrow Stimulation Surgery Influences Outcomes After Cell-Based Cartilage Restoration: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9(9):23259671211035384.
  • [100] Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am. J. Sports Med. 2010, 38(6):1259–1271.
  • [101] Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, et al. Failures, re-operations, and complications after autologous chondrocyte implantation--a systematic review. Osteoarthr. Cartil. 2011, 19(7):779–791.
  • [102] Steinmetz G, Hamilton J, Fernandes C, Bond J. Matrix-Induced Autologous Chondrycte Implantation for a Glenoid Chondral Defect: A Case Report. JBJS Case Connect. 2020, 10(2):e0264.
  • [103] Ebert JR, Robertson WB, Woodhouse J, Fallon M, Zheng MH, et al. Clinical and Magnetic Resonance Imaging–Based Outcomes to 5 Years After Matrix-Induced Autologous Chondrocyte Implantation to Address Articular Cartilage Defects in the Knee. Am. J. Sports Med. 2011, 39(4):753–763.
  • [104] Enea D, Cecconi S, Busilacchi A, Manzotti S, Gesuita R, et al. Matrix-induced autologous chondrocyte implantation (MACI) in the knee. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20(5):862–869.
  • [105] Nixon AJ, Sparks HD, Begum L, McDonough S, Scimeca MS, et al. Matrix-Induced Autologous Chondrocyte Implantation (MACI) Using a Cell-Seeded Collagen Membrane Improves Cartilage Healing in the Equine Model. J. Bone Joint Surg. Am. 2017, 99(23):1987–1998.
  • [106] Vijayan S, Bartlett W, Bentley G, Carrington RWJ, Skinner JA, et al. Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft. J. Bone Joint Surg. Br. 2012, 94-B(4):488–492.
  • [107] Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, et al. Evaluation of Cartilage Repair Tissue after Matrix-Associated Autologous Chondrocyte Transplantation Using a Hyaluronic-Based or a Collagen-Based Scaffold with Morphological MOCART Scoring and Biochemical T2 Mapping: Preliminary Results. Am. J. Sports Med. 2010, 38(5):934–942.
  • [108] Nixon AJ, Rickey E, Butler TJ, Scimeca MS, Moran N, et al. A chondrocyte infiltrated collagen type I/III membrane (MACI® implant) improves cartilage healing in the equine patellofemoral joint model. Osteoarthr. Cartil. 2015, 23(4):648–660.
  • [109] Lipiński Ł. Anatomy of the Hip Joint Preservation Point of View In Lower Extremity Joint Preservation: Techniques for Treating the Hip, Knee, and Ankle. 1st ed. New York: Springer, Cham, 2021, pp. 15–19.
  • [110] Cao Z, Dou C, Dong S. Scaffolding Biomaterials for Cartilage Regeneration. J. Nanomater. 2014, 2014:e489128.
  • [111] Jia S, Liu L, Pan W, Meng G, Duan C, et al. Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. J. Biosci. Bioeng. 2012, 113(5):647–653.
  • [112] Moreira Teixeira LS, Leijten JCH, Wennink JWH, Chatterjea AG, Feijen J, et al. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 2012, 33(14):3651–3661.
  • [113] Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, et al. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am. J. Sports Med. 2013, 41(3):511–518.
  • [114] Szychlinska MA, Calabrese G, Ravalli S, Dolcimascolo A, Castrogiovanni P, et al. Evaluation of a Cell-Free Collagen Type I-Based Scaffold for Articular Cartilage Regeneration in an Orthotopic Rat Model. Materials 2020, 13(10):2369.
  • [115] Umeyama R, Yamawaki T, Liu D, Kanazawa S, Takato T, et al. Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold. Regen. Ther. 2020, 14:284–295.
  • [116] Talouki PY, Tackallou SH, Shojaei S, Benisi SZ, Goodarzi V. The role of three-dimensional scaffolds based on polyglycerol sebacate/ polycaprolactone/ gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Biol. Proced. Online 2023, 25(1):9.
  • [117] Toyokawa N, Fujioka H, Kokubu T, Nagura I, Inui A, et al. Electrospun Synthetic Polymer Scaffold for Cartilage Repair Without Cultured Cells in an Animal Model. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26(3):375–383.
  • [118] Liu W, Madry H, Cucchiarini M. Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int. J. Mol. Sci. 2022, 23(3):1147.
  • [119] Sulaiman SB, Idrus RBH, Hwei NM. Gelatin Microsphere for Cartilage Tissue Engineering: Current and Future Strategies. Polymers 2020, 12(10):2404.
  • [120] Zhai P, Peng X, Li B, Liu Y, Sun H, et al. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020, 151:1224–1239.
  • [121] Huang C, Dong L, Zhao B, Huang S, Lu Y, et al. Tunable Sulfated Alginate-based Hydrogel Platform with enhanced anti-inflammatory and antioxidant capacity for promoting burn wound repair. J. Nanobiotechnol. 2023, 21(1):387.
  • [122] Li G, Shi Z, Zong H, Zhang K, Yan S, et al. Injectable, self-healing poly(amino acid)-hydrogel based on phenylboronate ester bond for osteochondral tissue engineering. Biomed. Mater. 2023, 18(5):055001.
  • [123] Coyle A, Chakraborty A, Huang J, Shamiya Y, Luo W, et al. Developing Bioactive Hydrogels Containing Cell-derived Extracellular Matrix: Implications in Drug and Cell-free Bone and Cartilage Repair. bioRxiv 2024, 2024:3.
  • [124] Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, et al. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. Materials 2020, 13(7):1500.
  • [125] Deng C, Zhu H, Li J, Feng C, Yao Q, et al. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface. Theranostics 2018, 8(7):1940–1955.
  • [126] Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials 2021, 14(18):5338.
  • [127] Bernstein A, Niemeyer P, Salzmann G, Südkamp NP, Hube R, et al. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomater. 2013, 9(7):7490–7505.
  • [128] Cai H, Yao Y, Xu Y, Wang Q, Zou W, et al. A Col I and BCP ceramic bi-layer scaffold implant promotes regeneration in osteochondral defects. RSC Adv. 2019, 9(7):3740–3748.
  • [129] Cao Y, Cheng P, Sang S, Xiang C, An Y, et al. 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study. Mater Des. 2021, 210:110065.
  • [130] Seol YJ, Park JY, Jeong W, Kim TH, Kim SY, et al. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration. J. Biomed. Mater. Res. A. 2015, 103(4):1404–1413.
  • [131] Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. Membranes 2020, 10(11):348.
  • [132] Benders KEM, van Weeren PR, Badylak SF, Saris DBF, Dhert WJA, et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013, 31(3):169–176.
  • [133] Das P, Singh YP, Joardar SN, Biswas BK, Bhattacharya R, et al. Decellularized Caprine Conchal Cartilage toward Repair and Regeneration of Damaged Cartilage. ACS Appl. Bio Mater. 2019, 2(5):2037–2049.
  • [134] Das P, Mishra R, Devi B, Rajesh K, Basak P, et al. Decellularized xenogenic cartilage extracellular matrix (ECM) scaffolds for the reconstruction of osteochondral defects in rabbits. J. Mater. Chem. B. 2021, 9(24):4873–4894.
  • [135] Tian G, Jiang S, Li J, Wei F, Li X, et al. Cell-free decellularized cartilage extracellular matrix scaffolds combined with interleukin 4 promote osteochondral repair through immunomodulatory macrophages: in vitro and in vivo preclinical study. Acta Biomater. 2021, 127:131–145.
  • [136] Zhang Q, Hu Y, Long X, Hu L, Wu Y, et al. Preparation and application of decellularized ECM-based biological scaffolds for articular cartilage repair: a review. Front. Bioeng. Biotechnol. 2022, 10:908082.
  • [137] Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, et al. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int. J. Mol. Sci. 2021, 22(22):12420.
  • [138] Holmes B, Zhu W, Li J, Lee JD, Zhang LG. Development of Novel Three-Dimensional Printed Scaffolds for Osteochondral Regeneration. Tissue Eng. Part A. 2015, 21(1–2):403–415.
  • [139] Sutherland A, Beck E, Dennis S, Converse G, Hopkins R, et al. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering. PLoS One. 2015, 10:e0121966.
  • [140] Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng. Transl. Med. 2018, 4(1):83–95.
  • [142] Kim M, Farrell MJ, Steinberg DR, Burdick JA, Mauck RL. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs. Acta Biomater. 2017, 58:1–11.
  • [143] Sartori M, Pagani S, Ferrari A, Costa V, Carina V, et al. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70(Pt 1):101–111.
  • [144] Longley R, Ferreira AM, Gentile P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. Int. J. Mol. Sci. 2018, 19(6):1755.
  • [145] Liu K, Liu Y, Duan Z, Ma X, Fan D. A biomimetic bi-layered tissue engineering scaffolds for osteochondral defects repair. Sci. China Technol. Sci. 2021, 64(4):793–805.
  • [146] Fu L, Yang Z, Gao C, Li H, Yuan Z, et al. Advances and prospects in biomimetic multilayered scaffolds for articular cartilage regeneration. Regener. Biomater. 2020, 7(6):527–542.
  • [147] Wang W, Li H, Song P, Guo Y, Luo D, et al. Photo-crosslinked integrated triphasic scaffolds with gradient composition and strength for osteochondral regeneration. J. Mater. Chem. B. 2024, 12(5):1271–1284.
  • [148] Yu X, Deng Z, Li H, Ma Y, Ma X, et al. Anisotropic hydrogel fabricated by controlled diffusion as a bio-scaffold for the regeneration of cartilage injury. RSC Adv. 2022, 12(43):28254–28263.
  • [149] Molley TG, Hung TT, Kilian KA. Cell-Laden Gradient Microgel Suspensions for Spatial Control of Differentiation During Biofabrication. Adv. Healthc. Mater. 2022, 11(24):2201122.
  • [150] Weigel N, Grigoryev E, Fertala N, Thiele J. Fabrication of Thermoresponsive and Multimaterial Hydrogel Sheets by Spatially Controlled Aspiration and Interconnection of Microgel Building Blocks. Adv. Mater. Technol. 2023, 8(23):2300374.
  • [151] Camacho P, Behre A, Fainor M, Seims KB, Chow LW. Spatial organization of biochemical cues in 3D-printed scaffolds to guide osteochondral tissue engineering. Biomater. Sci. 2021, 9(20):6813–6829.
  • [152] Chukaew S, Parivatphun T, Thonglam J, Khangkhamano M, Meesane J, et al. Biphasic scaffolds of polyvinyl alcohol/gelatin reinforced with polycaprolactone as biomedical materials supporting for bone augmentation based on anatomical mimicking; fabrication, characterization, physical and mechanical properties, and in vitro testing. J. Mech. Behav. Biomed. Mater. 2023, 143:105933.
  • [153] Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, et al. 3D Bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Sci. Rep. 2020, 10(1):1–17.
  • [154] Pugliese R, Graziosi S. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. SLAS Technol. 2023, 28(3):165–182.
  • [155] Cianflone E, Brouillet F, Grossin D, Soulié J, Josse C, et al. Toward Smart Biomimetic Apatite-Based Bone Scaffolds with Spatially Controlled Ion Substitutions. Nanomaterials 2023, 13(3):519.
  • [156] Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023, 15(10):2405.
  • [157] Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics 2024, 9(7):377.
  • [158] Kim SH, Kim SH, Jung Y. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2–HFIP co-solvent system for cartilage tissue engineering. J. Control. Release. 2015, 206:101–107.
  • [159] Zhang Y, Tang CL, Chen WJ, Zhang Q, Wang SL. Dynamic compression combined with exogenous SOX-9 promotes chondrogenesis of adipose-derived mesenchymal stem cells in PLGA scaffold. Eur. Rev. Med. Pharmacol. Sci. 2015,19(14):2671–2678.
  • [160] Wang T, Lai JH, Han LH, Tong X, Yang F. Modulating stem cell-chondrocyte interactions for cartilage repair using combinatorial extracellular matrix-containing hydrogels. J. Mater. Chem. B. 2016, 4(47):7641–7650.
  • [161] Wu Y, Yang Z, Denslin V, Ren X, Lee CS, et al. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Am. J. Sports Med. 2020, 48(7):1735–1747.
  • [162] Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured Autologous Human Cells for Hard Tissue Regeneration: Preparation and Characterization of Mesenchymal Stem Cells from Bone Marrow. Artif. Organs 2004, 28(1):33–39.
  • [163] Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J. Exp. Clin. Cancer Res. 2011, 30:9.
  • [164] Hernigou P, Bouthors C, Bastard C, Flouzat Lachaniette CH, Rouard H, et al. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study. Int. Orthop. 2021, 45(2):391–399.
  • [165] Xue R, Chung B, Tamaddon M, Carr J, Liu C, et al. Osteochondral tissue coculture: An in vitro and in silico approach. Biotechnol. Bioeng. 2019, 116(11):3112–3123.
  • [166] Gruenloh W, Kambal A, Sondergaard C, McGee J, Nacey C, et al. Characterization and In Vivo Testing of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells. Tissue Eng. Part A 2011, 17(11–12):1517–1525.
  • [167] Yasui Y, Chijimatsu R, Hart DA, Koizumi K, Sugita N, et al. Preparation of Scaffold-Free Tissue-Engineered Constructs Derived from Human Synovial Mesenchymal Stem Cells Under Low Oxygen Tension Enhances Their Chondrogenic Differentiation Capacity. Tissue Eng. Part A 2016, 22(5–6):490–500.
  • [168] Fu L, Li P, Li H, Gao C, Yang Z, et al. The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells Int. 2021, 2021:6621806.
  • [169] Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact. Mater. 2021, 6(12):4830–4855.
  • [170] Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol. 2008, 45(4):567–581.
  • [171] Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, et al. Cardiomyocyte Grafting for Cardiac Repair: Graft Cell Death and Anti-Death Strategies. J. Mol. Cell. Cardiol. 2001, 33(5):907–921.
  • [172] Michel JB. Anoïkis in the Cardiovascular System. Arterioscler. Thromb. Vasc. Biol. 2003, 23(12):2146–2154.
  • [173] Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J. Pathol. 2012, 226(2):380–393.
  • [174] Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid. Med. Cell. Longev. 2015, 2015:632902.
  • [175] Aswathy J, Resmi R, Joseph J, Joseph R, John A, et al. Calotropis gigantea incorporated alginate dialdehyde-gelatin hydrogels for cartilage tissue regeneration in Osteoarthritis. J. Drug Deliv. Sci. Technol. 2023, 82:104372.
  • [176] Branam GM, Saber AY. Osteochondral Autograft Transplantation. 2024, Available: https://www.ncbi.nlm.nih.gov/books/NBK560655/ (accessed on 8 Feb 2023).
  • [177] Frank RM, Cotter EJ, Lee S, Poland S, Cole BJ. Do Outcomes of Osteochondral Allograft Transplantation Differ Based on Age and Sex? A Comparative Matched Group Analysis. Am. J. Sports Med. 2018, 46(1):181–191.
  • [178] Ayala Mejias JD, Sciamanna RCA, Muniesa MPE, Pérez-España LA. A case report of semitendinosus tendon autograft for reconstruction of the meniscal wall supporting a collagen implant. BMC Sports Sci. Med. Rehabil. 2013, 5:4.
  • [179] Johnson LL, Feagin JA. Autogenous tendon graft substitution for absent knee joint meniscus: a pilot study. Arthroscopy 2000, 16(2):191–196.
  • [180] Kohn D. Autograft meniscus replacement: experimental and clinical results. Knee Surg. Sports Traumatol. Arthrosc. 1993, 1(2):123–125.
  • [181] Bedi A, Feeley BT, Williams RJ. Management of articular cartilage defects of the knee. J. Bone Joint Surg. Am. 2010, 92(4):994–1009.
  • [182] Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res. Ther. 2013, 15(1):R22.
  • [183] Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J. Bone Joint Surg. Br. 2003, 85(5):740–747.
  • [184] English A, Jones EA, Corscadden D, Henshaw K, Chapman T, et al. A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology 2007, 46(11):1676–1683.
  • [185] Giavaresi G, Bondioli E, Melandri D, Giardino R, Tschon M, et al. Response of human chondrocytes and mesenchymal stromal cells to a decellularized human dermis. BMC Musculoskelet. Disord. 2013, 14:12.
  • [186] Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 2004, 86(3):455–464.
  • [187] Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy 2013, 29(4):748–755.
  • [188] Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 2012, 19(6):902–907.
  • [189] Ma A, Jiang L, Song L, Hu Y, Dun H, et al. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Int. Immunopharmacol. 2013, 16(3):399–408.
  • [190] Brittberg M, Peterson L, Sjögren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Joint Surg. Am. 2003, 85-A Suppl 3:109–115.
  • [191] Massen FK, Inauen CR, Harder LP, Runer A, Preiss S, et al. One-Step Autologous Minced Cartilage Procedure for the Treatment of Knee Joint Chondral and Osteochondral Lesions: A Series of 27 Patients With 2-Year Follow-up. Orthop. J. Sports Med. 2019, 7(6):2325967119853773.
  • [192] Na Y, Shi Y, Liu W, Jia Y, Kong L, et al. Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data. Int. J. Surg. 2019, 68:56–62.
  • [193]de Windt TS, Vonk LA, Slaper-Cortenbach ICM, Nizak R, van Rijen MHP, et al. Allogeneic MSCs and Recycled Autologous Chondrons Mixed in a One-Stage Cartilage Cell Transplantion: A First-in-Man Trial in 35 Patients. Stem Cells 2017, 35(8):1984–1993.
  • [194] Korpershoek JV, Vonk LA, Kester EC, Creemers LB, de Windt TS, et al. Efficacy of one-stage cartilage repair using allogeneic mesenchymal stromal cells and autologous chondron transplantation (IMPACT) compared to nonsurgical treatment for focal articular cartilage lesions of the knee: study protocol for a crossover randomized controlled trial. Trials 2020, 21(1):842.
  • [195] Saris TFF, de Windt TS, Kester EC, Vonk LA, Custers RJH, et al. Five-Year Outcome of 1-Stage Cell-Based Cartilage Repair Using Recycled Autologous Chondrons and Allogenic Mesenchymal Stromal Cells: A First-in-Human Clinical Trial. Am. J. Sports Med. 2021, 49(4):941–947.
  • [196] García-Gómez I, Elvira G, Zapata AG, Lamana ML, Ramírez M, et al. Mesenchymal stem cells: biological properties and clinical applications. Expert Opin. Biol. Ther. 2010, 10(10):1453–1468.
  • [197] Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002, 10(3):199–206.
  • [198] Bekkers JEJ, Creemers LB, Tsuchida AI, van Rijen MHP, Custers RJH, et al. One-stage focal cartilage defect treatment with bone marrow mononuclear cells and chondrocytes leads to better macroscopic cartilage regeneration compared to microfracture in goats. Osteoarthritis Cartilage 2013, 21(7):950–956.
  • [199] Bekkers JEJ, Tsuchida AI, van Rijen MHP, Vonk LA, Dhert WJA, et al. Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am. J. Sports Med. 2013, 41(9):2158–2166.
  • [200] Vonk LA, Doulabi BZ, Huang C, Helder MN, Everts V, et al. Preservation of the chondrocyte’s pericellular matrix improves cell-induced cartilage formation. J. Cell. Biochem. 2010, 110(1):260–271.
  • [201] Altman R, Asch E, Bloch D, Bole G, Borenstein D, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986, 29(8):1039–1049.
  • [202] Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR. Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc. Assoc. Am. Physicians 1998, 110(1):65–72.
  • [203] Radin EL, Ehrlich MG, Chernack R, Abernethy P, Paul IL, et al. Effect of repetitive impulsive loading on the knee joints of rabbits. Clin. Orthop. Relat. Res. 1978, (131):288–293.
  • [204] Wang X, Wu Q, Zhang R, Fan Z, Li W, et al. Stage-specific and location-specific cartilage calcification in osteoarthritis development. Ann. Rheum. Dis. 2023, 82(3):393–402.