Article
Open Access
Influence of radiotherapy on miRNA dynamics in urine extracellular vesicles
1 Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
2 E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
  • Volume
  • Citation
    Salloum G, Konoshenko M, Murina E, Ostaltsev I, Laktionov P, et al. Influence of radiotherapy on miRNA dynamics in urine extracellular vesicles. ExRNA 2024(4):0017, https://doi.org/10.55092/exrna20240017. 
  • DOI
    10.55092/exrna20240017
  • Copyright
    Copyright2024 by the authors. Published by ELSP.
Abstract

Prostate cancer (PCa) is a common malignancy in men, necessitating accurate diagnosis and monitoring to ensure effective treatment and prevent early relapse. Radiation therapy (RT) is a standard treatment for localized PCa, effectively targeting cancer cells. However, predictive markers are required to optimize efficacy and long-term monitoring to mitigate the risks of tumor regrowth and metastasis. This study investigated the levels of 14 miRNAs in urinary extracellular vesicles, comparing healthy individuals (HI) to PCa patients, as well as the dynamics of these miRNA levels 1 month and 3 months post-RT. A high diagnostic potential was detected in 42 miRNA ratios that showed significant differences between HI and PCa patients. Additionally, 43 miRNA ratios exhibited significant changes before RT and at 1 and 3 months post-RT. Aberrant miRNA expression was observed, suggesting their utility as biomarkers for diagnosis and prognosis. Dynamic changes in miRNA expression following RT highlight their potential in assessing treatment efficacy and predicting disease progression. However, evaluating the prognostic value of RT-influenced miRNAs requires long-term patient follow-up and retrospective data analysis.

Keywords

prostate cancer; radiotherapy; miRNA; therapy effectiveness; liquid biopsy; extracellular vesicles; urine

Preview
References
  • [1]Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, et al. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149(4):778–789.
  • [2]Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71(3):209–249.
  • [3]Descotes JL. Diagnosis of prostate cancer. Asian J. Urol. 2019, 6(2):129–136.
  • [4]Loeb S, Bjurlin MA, Nicholson J, Tammela TL, Penson DF, et al. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 2014, 65(6):1046–1055.
  • [5]US Preventive Services Task Force; Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, Caughey AB, et al. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319(18):1901–1913.
  • [6]Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 2016, 375(15):1415–1424.
  • [7]Nguyen-Nielsen M, Borre M. Diagnostic and Therapeutic Strategies for Prostate Cancer. Semin. Nucl. Med. 2016, 46(6):484–490.
  • [8]Reijnen C, Brunenberg EJL, Kerkmeijer LGW. Advancing the treatment of localized prostate cancer with MR-guided radiotherapy. Prostate Cancer Prostatic Dis. 2023, 26(1):50–52.
  • [9]Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015, 12(9):527–540.
  • [10]Gay HA, Michalski JM. Radiation Therapy for Prostate Cancer. Mo. Med. 2018, 115(2):146–150.
  • [11]Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, et al. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27(17):5730.
  • [12]Lamy PJ, Allory Y, Gauchez AS, Asselain B, Beuzeboc P, et al. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review. Eur. Urol. Focus 2018, 4(6):790–803.
  • [14]May EJ, Viers LD, Viers BR, Kawashima A, Kwon ED, et al. Prostate cancer post-treatment follow-up and recurrence evaluation. Abdom. Radiol. (NY). 2016, 41(5):862–876.
  • [15]Mohler JL, Kantoff PW, Armstrong AJ, Bahnson RR, Cohen M, et al. Prostate cancer, version 2.2014. J. Natl. Compr. Canc. Netw. 2014, 12(5):686–718.
  • [16]Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 2012, 80(6):1948–1957.
  • [17]Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: a critical assessment. Protoplasma 2016, 253(1):31–43.
  • [18]Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 1987, 262(19):9412–9420.
  • [19]Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30:255–289.
  • [20]Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013, 2(1):20360.
  • [21]Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, et al. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 2018, 15(10):617–638.
  • [22]Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles. 2021, 10(7):e12093.
  • [23]Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD, et al. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J. Mol. Diagn. 2015, 17(3):209–224.
  • [24]Silva J, García V, Zaballos Á, et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Respir. J. 2011, 37(3):617–623.
  • [25]Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13(4):423–433.
  • [26]Uzuner E, Ulu GT, Gürler SB, Baran Y. The role of miRNA in cancer: pathogenesis, diagnosis, and treatment. Methods Mol. Biol. 2022, 2257:375–422.
  • [27]Moustafa AA, Kim H, Albeltagy RS, El-Habit OH, Abdel-Mageed AB. MicroRNAs in prostate cancer: From function to biomarker discovery. Exp. Biol. Med. 2008, 243(10):817–825.
  • [28]Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012, 148(6):1172–1187.
  • [29]Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu. Rev. Pathol. 2014, 9(1):287–314.
  • [30]Seok H, Ham J, Jang ES, Chi SW. MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol. Cells 2016, 39(5):375–381.
  • [31]Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008, 14(5):844–852.
  • [32]Quang MT, Nguyen MN. The potential of microRNAs in cancer diagnostic and therapeutic strategies: a narrative review. J Basic Appl Zool. 2024, 85:1–11.
  • [33]Lekchnov EA, Amelina EV, Bryzgunova OE, Zaporozhchenko IA, Konoshenko MY, et al. Searching for the novel specific predictors of prostate cancer in urine: The analysis of 84 miRNA expression. Int. J. Mol. Sci. 2018, 19(12):4088.
  • [34]Konoshenko MY, Lekchnov EA, Bryzgunova OE, Kiseleva E, Pyshnaya IA, et al. Isolation of extracellular vesicles from biological fluids via the aggregation–precipitation approach for downstream miRNAs detection. Diagnostics 2021, 11(3):384.
  • [35]Lekchnov EA, Zaporozhchenko IA, Morozkin ES, Bryzgunova OE, Vlassov VV, Laktionov PP. Protocol for miRNA isolation from biofluids. Anal. Biochem. 2016, 499:78–84.
  • [36]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005, 33(20):179.
  • [37]Boeri M, Verri C, Conte D, Roz L, Modena P, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 2011, 108(9):3713–3718.
  • [38]Landoni E, Miceli R, Callari M, Tiberio P, Appierto V, et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinform. 2015, 16:388.
  • [39]Gantier MP, Sadler AJ, Williams BR, Williams BR. Fine-tuning of the innate immune response by microRNAs. Immunol. Cell Biol. 2007, 85(6):458–462.
  • [40] Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs – an update. Nat. Rev. Clin. Oncol. 2018, 15(9):541–563.
  • [41]Graveel CR, Calderone HM, Westerhuis JJ, Winn ME, Sempere LF. Critical analysis of the potential for microRNA biomarkers in breast cancer management. Breast Cancer (Dove Med Press) 2015, 7:59–79.
  • [42]Sempere LF, Kauppinen S. Chapter 340 - Translational Implications of MicroRNAs in Clinical Diagnostics and Therapeutics. In Handbook of Cell Signaling, 2nd ed. Amsterdam: Elsevier, 2010, pp. 2965–2981.
  • [43]Konoshenko MY, Lekchnov EA, Bryzgunova OE, Zaporozhchenko IA, Yarmoschuk SV, et al. The Panel of 12 Cell-Free MicroRNAs as Potential Biomarkers in Prostate Neoplasms. Diagnostics. 2020, 10(1):38.
  • [44]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, et al. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007, 67(13):6130–6135.
  • [45]Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008, 27:1788-1793.
  • [46]Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol. 2024, 24(1):244.
  • [47]Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Møller S, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012, 31(8):978–981.
  • [48]Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, et al. The potential of microRNAs as prostate cancer biomarkers. Eur. Urol. 2016, 70(2):312–322.
  • [49]Duca RB, Massillo C, Dalton GN, Farré PL, Graña KD, et al. MiR-19b-3p and miR-101-3p as potential biomarkers for prostate cancer diagnosis and prognosis. Am. J. Cancer Res. 2021, 11(6):2802–2820.
  • [50]Santo GD, Frasca M, Bertoli G, Castiglioni I, Cava C. Identification of key miRNAs in prostate cancer progression based on miRNA-mRNA network construction. Comput. Struct. Biotechnol. J. 2022, 20(1):864–873.
  • [51]Zhao J, Xu H, Duan Z, Chen X, Ao Z, et al. miR-31-5p regulates 14-3-3 ɛ to inhibit prostate cancer 22RV1 cell survival and proliferation via PI3K/AKT/Bcl-2 signaling pathway. Cancer Manag. Res. 2020, 12:6679–6694.
  • [52]Mothersill C, Seymour C. Are epigenetic mechanisms involved in radiation-induced bystander effects. Front. Genet. 2012, 3:74.
  • [53]W Zhao, D I Diz, M E Robbins. Oxidative damage pathways in relation to normal tissue injury. Br. J. Radiol. 2007, 80(Special Issue 1):S23–S31.
  • [54]Najafi M, Fardid R, Hadadi G, Fardid M. The mechanisms of radiation-induced bystander effect. J. Biomed. Phys. Eng. 2014, 4(4):163–172.
  • [55]Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, et al. Radiation-induced fibrosis: mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol. 2015, 141(11):1985–1994.
  • [56]Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: towards predicting response to radiation treatment. Curr. Med. Chem. 2022, 29(9):1543–1560.
  • [57]Malla B, Zaugg K, Vassella E, Aebersold DM, Dal Pra A. Exosomes and exosomal microRNAs in prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98(5):982–995.
  • [58]Ni J, Bucci J, Chang L, Malouf D, Graham P, et al. Targeting microRNAs in prostate cancer radiotherapy. Theranostics 2017, 7(13):3243–3259.
  • [59]Matos B, Bostjancic E, Matjasic A, Popovic M, Glavac D. Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status. Radiol. Oncol. 2018, 52(4):422–432.
  • [60]Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer 2009, 9(2):134–142.
  • [61]Metheetrairut C, Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy. Cancer Genomics 2013, 23(1):12–19.
  • [62]Lu C, Zhou D, Wang Q, Liu W, Yu F, et al. Crosstalk of microRNAs and oxidative stress in the pathogenesis of cancer. Oxid. Med. Cell. Longev. 2020, 2020:2415324.
  • [63]Mao L, Liu S, Hu L, Jia L, Wang H, et al. miR-30 family: A promising regulator in development and disease. Biomed. Res. Int. 2018, 2018:9623412.
  • [64]Zhang Z, Qin H, Jiang B, Chen W, Cao W, et al. miR-30e-5p suppresses cell proliferation and migration in bladder cancer through regulating metadherin. J. Cell Biochem. 2019, 120(9):15924–15932.
  • [65]Liu MM, Li Z, Han XD, Shi JH, Tu DY, et al. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in breast cancer. Sci. Rep. 2017, 7(1):15929.
  • [66]Ganapathy K, Ngo C, Andl T, Coppola D, Park J, et al. Anticancer function of microRNA-30e is mediated by negative regulation of HELLPAR, a noncoding macroRNA, and genes involved in ubiquitination and cell cycle progression in prostate cancer. Mol. Oncol. 2022, 16(16):2936–2958.
  • [67]Wang Y, Zeng G, Jiang Y. The emerging roles of miR-125b in cancers. Cancer Manag. Res. 2020, 12:1079–1088.
  • [68]Zheng Z, Qu JQ, Yi HM, Zhou Y, Wang YY, et al. MiR-125b regulates proliferation and apoptosis of nasopharyngeal carcinoma by targeting A20/NF-kappaB signaling pathway. Cell Death Dis. 2017, 8(6):e2855.
  • [69]Mei LL, Wang WJ, Qiu YT, Xie XF, Bai J, et al. miR-125b-5p functions as a tumor suppressor gene partially by regulating HMGA2 in esophageal squamous cell carcinoma. PLoS One 2017, 12(10):e0185636.
  • [70]Chen S, Li P, Li J, Zhou L, Wang Y, et al. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell Physiol. Biochem 2015, 35(3):997–1007.
  • [71]Mu Y, Wang Q, Tan L, Lin L, Zhang B. MicroRNA-144 inhibits cell proliferation and invasion by directly targeting TIGAR in esophageal carcinoma. Oncol. Lett. 2020, 19(4):3079–3088.
  • [72]Yao Q, Gu A, Wang Z, Xue Y. MicroRNA-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2. Exp. Ther. Med. 2018, 15(3):3088–3095.
  • [73]Sun XB, Chen YW, Yao QS, Chen XH, He M, et al. MicroRNA-144 suppresses prostate cancer growth and metastasis by targeting EZH2. Technol. Cancer Res. Treat 2021, 20:1533033821989817.
  • [74]Zheng H, Guo Z, Zheng X, Cheng W, Huang X. MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting CEP55. Am. J. Transl. Res. 2018, 10(8):2457–2468.
  • [75]Matsuzaki J, Suzuki H, Tsugawa H, Watanabe M, Hossain S, et al. Bile acids increase levels of microRNAs 221 and 222, leading to degradation of CDX2 during esophageal carcinogenesis. Gastroenterology 2013, 145:1300–1311.
  • [76]Liu K, Li G, Fan C, Diao Y, Wu B, et al. Increased expression of microRNA-221 in gastric cancer and its clinical significance. J. Int. Med. Res. 2012, 40:467–474.
  • [77]Matsuzaki J, Suzuki H. Role of MicroRNAs-221/222 in digestive systems. J. Clin. Med. 2015, 4(8):1566–15
  • [78]Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kip1. J. Biol. Chem. 2007, 282:23716–23724.
  • [79]Jia M, Wang Z. MicroRNAs as biomarkers for ionizing radiation injury. Front. Cell Dev. Biol. 2022, 10:861451.
  • [80]Kwak SY, Kim BY, Ahn HJ, Yoo JO, Kim J, Bae IH, et al. Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B. FEBS J. 2015, 282(8):1512–1525.
  • [81]Nilsen A, Hillestad T, Skingen VE, Aarnes EK, Fjeldbo CS, et al. miR-200a/b/-429 downregulation is a candidate biomarker of tumor radioresistance and independent of hypoxia in locally advanced cervical cancer. Mol. Oncol. 2022, 16(6):1402–1419.
  • [82]Wu W, Chen X, Yu S, Wang R, Zhao R, Du C. MicroRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN. Mol. Med. Rep. 2018, 17(1):1305–1310.
  • [83]McGrath J, Kane LE, Maher SG. The influence of MicroRNA-31 on oxidative stress and radiosensitivity in pancreatic ductal adenocarcinoma. Cells 2022, 11(15):2294.
  • [84]Sun T, Yin YF, Jin HG, Liu HR, Tian WC. Exosomal microRNA-19b targets FBXW7 to promote colorectal cancer stem cell stemness and induce resistance to radiotherapy. Kaohsiung J. Med. Sci. 2022, 38(2):108–119.
  • [85]Huang T, Yin L, Wu J, Gu JJ, Wu JZ, et al. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis. J. Exp. Clin. Cancer Res. 2016, 35(1):188.
  • [86]Zaporozhchenko IA, Morozkin ES, Ponomaryova AA, Rykova EY, Cherdyntseva NV, et al. Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals. Sci. Rep. 2018, 8(1):6348.
  • [87]Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and androgen deprivation therapy for prostate cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876(2):188625.