Review
Open Access
Roles of RNAkines in regulating glucose homeostasis
Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
Abstract

Under physiological conditions, the body maintains glucose homeostasis through interorgan communication between metabolic organs. As is well known, this crosstalk is mediated by traditional hormones or metabolites. Recently, a new type of secreted factor called RNAkine has become increasingly prominent in regulating glucose homeostasis. They are secreted non-coding RNAs that are mainly transported from the origin cells to the target cells through extracellular vesicles (EVs), participating in interorgan communication. In this review, we summarized the various organs involved in glucose homeostasis and their inter-organ crosstalk, and emphasized the important role of RNAkines which is of great significance for both the prevention and treatment of type 2 diabetes mellitus (T2DM).

Keywords

RNAkine; glucose homeostasis; miRNA; pancreatic islets

Preview
References
  • [1] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215–233.
  • [2] Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136(4):642–655.
  • [3] Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends Endocrinol Metab 2017, 28(1):3–18.
  • [4] Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9(6):654–659.
  • [5] Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(12):5003–5008.
  • [6] Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18(10):997–100
  • [7] Bartel DP. Metazoan MicroRNAs. Cell 2018, 173(1):20–51.
  • [8] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281–297.
  • [9] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11(9):597–610.
  • [10] Li J, Fang J, Jiang X, Zhang Y, Vidal-Puig A, et al. RNAkines are secreted messengers shaping health and disease. Trends Endocrinol. Metab. 2024, 35(3):201–218.
  • [11] van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2022, 23(5):369–382.
  • [12] Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD,Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011, 13(4):423–433.
  • [13] Orci L, Unger RH. Functional subdivision of islets of Langerhans and possible role of D cells. Lancet 1975, 2(7947):1243–1244.
  • [14] Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(7):2334–2339.
  • [15] Kojima S, Ueno N, Asakawa A, Sagiyama K, Naruo T, et al. A role for pancreatic polypeptide in feeding and body weight regulation. Peptides 2007, 28(2):459–463.
  • [16] Freychet L, Rizkalla SW, Desplanque N, Basdevant A, Zirinis P, et al. Effect of intranasal glucagon on blood glucose levels in healthy subjects and hypoglycaemic patients with insulin-dependent diabetes. Lancet 1988, 1(8599):1364–1366.
  • [17] Komatsu M, Takei M, Ishii H,Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J. Diabetes Investig. 2013, 4(6):511–516.
  • [18] Lin TM, Chance RE. Candidate hormones of the gut. VI. Bovine pancreatic polypeptide (BPP) and avian pancreatic polypeptide (APP). Gastroenterology 1974, 67(4):737–738.
  • [19] Aragon F, Karaca M, Novials A, Maldonado R, Maechler P, et al. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochim. Biophys. Acta 2015, 1850(2):343–351.
  • [20] Brazeau P, Vale W, Burgus R, Ling N, Butcher M, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179(4068):77–79.
  • [21] Rorsman P, Huising MO. The somatostatin-secreting pancreatic delta-cell in health and disease. Nat. Rev. Endocrinol. 2018, 14(7):404–414.
  • [22] Dezaki K, Sone H, Yada T. Ghrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis. Pharmacol. Ther. 2008, 118(2):239–249.
  • [23] Dezaki K, Hosoda H, Kakei M, Hashiguchi S, Watanabe M, et al. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes 2004, 53(12):3142–3151.
  • [24] Bower RL, Hay DL. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br. J. Pharmacol. 2016, 173(12):1883–1898.
  • [25] Hoekstra JB, van Rijn HJ, Erkelens DW,Thijssen JH. C-peptide. Diabetes Care 1982, 5(4):438–446.
  • [26] Janciauskiene S, Eriksson S, Carlemalm E,Ahren B. B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. Biochem. Biophys. Res. Commun. 1997, 236(3):580–585.
  • [27] Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma XS, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432(7014):226–230.
  • [28] Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem. 2007, 282(27):19575–19588.
  • [29] Gao N, White P, Doliba N, Golson ML, Matschinsky FM, et al. Foxa2 controls vesicle docking and insulin secretion in mature Beta cells. Cell Metab. 2007, 6(4):267–279.
  • [30] Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem. 2006, 281(37):26932–26942.
  • [31] Filios SR, Xu GL, Chen JQ, Hong K, Jing G, et al. MicroRNA-200 Is Induced by Thioredoxin-interacting Protein and Regulates Zeb1 Protein Signaling and Beta Cell Apoptosis. J. Biol. Chem. 2014, 289(52):36275–36283.
  • [32] Zhang A, Li D, Liu Y, Li J, Zhang Y, et al. Islet beta cell: An endocrine cell secreting miRNAs. Biochem. Biophys. Res. Commun. 2018, 495(2):1648–1654.
  • [33] Xu HX, Du X, Xu J, Zhang Y, Tian Y, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020, 18(2): e3000603.
  • [34] Li J, Zhang YJ, Ye YY, Li DM, Liu YC, et al. Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR-29 family. J. Extracell. Vesicles 2021, 10(3):e12055.
  • [35] Sun Y, Zhou Y, Shi Y, Zhang Y, Liu K, et al. Expression of miRNA-29 in Pancreatic beta Cells Promotes Inflammation and Diabetes via TRAF3. Cell Rep. 2021, 34(1):108576.
  • [36] Zhou Y, Liu K, Tang W, Zhang Y, Sun Y, et al. beta-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and beta-Cell Decompensation. Diabetes 2024, 73(1):57–74.
  • [37] Zhang Y, Qian B, Yangyang, Niu F, Lin C, et al. Visceral adipocyte-derived extracellular vesicle miR-27a-5p elicits glucose intolerance by inhibiting pancreatic beta-cell insulin secretion. Diabetes 2024, 73(11):1832–1847.
  • [38] Jalabert A, Vial G, Guay C, Wiklander OPB, Nordin JZ, et al. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 2016, 59(5):1049–1058.
  • [39] Fu Q, Li Y, Jiang HM, Shen ZY, Gao R, et al. Hepatocytes derived extracellular vesicles from high-fat diet induced obese mice modulate genes expression and proliferation of islet β cells. Biochem. Biophys. Res. Commun. 2019, 516(4):1159–1166.
  • [40] Kloting N, Bluher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15(4):277–287.
  • [41] Lee MW, Lee M, Oh KJ. Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J. Clin. Med. 2019, 8(6):854.
  • [42] Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 2015, 163(1):84–94.
  • [43] Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 2001, 7(8):947–953.
  • [44] Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474(7353):649–653.
  • [45] Yu Y, Du HW, Wei SN, Feng LJ, Li JN, et al. Adipocyte-Derived Exosomal MiR-27a Induces Insulin Resistance in Skeletal Muscle Through Repression of PPARγ. Theranostics 2018, 8(8):2171–2188.
  • [46] Dang SY, Leng Y, Wang ZX, Xiao X, Zhang X, et al. Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. International Journal of Biological Sciences 2019, 15(2):351–368.
  • [47] Wang YC, Li YY, Wang XY, Zhang D, Zhang HH, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013, 56(10):2275–2285.
  • [48] Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Invest. 2019, 129(2):834–849.
  • [49] Yang FT, Stanford KI. Batokines: Mediators of Inter-Tissue Communication (a Mini-Review). Curr. Obes. Rep. 2022, 11(1):1–9.
  • [50] Xu J, Cui L, Wang J, Zheng S, Zhang H, et al. Cold-activated brown fat-derived extracellular vesicle-miR-378a-3p stimulates hepatic gluconeogenesis in male mice. Nat. Commun. 2023, 14(1):5480.
  • [51] Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017, 542(7642):450–455.
  • [52] Li D, Song H, Shuo L, Wang L, Xie P, et al. Gonadal white adipose tissue-derived exosomal MiR-222 promotes obesity-associated insulin resistance. Aging (Albany NY) 2020, 12(22):22719–22743.
  • [53] Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate and Insulin Sensitivity. Cell 2017, 171(2):372–384.
  • [54] Liu T, Sun YC, Cheng P, Shao HG. Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem. Biophys. Res. Commun. 2019, 515(2):352–358.
  • [55] Ying W, Gao H, Dos Reis FCG, Bandyopadhyay G, Ofrecio JM, et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 2021, 33(4):781–790.
  • [56] Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, et al. Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2004, 287(6):E1189–E1194.
  • [57] Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006, 55(10):2688–2697.
  • [58] Yin X, Zhao Y, Zheng YL, Wang JZ, Li W, et al. Time-Course Responses of Muscle-Specific MicroRNAs Following Acute Uphill or Downhill Exercise in Sprague-Dawley Rats. Front. Physiol. 2019, 10:1275.
  • [59] Castano C, Mirasierra M, Vallejo M, Novials A, Parrizas M. Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc. Natl. Acad. Sci. U.S.A. 2020, 117(48):30335–30343.
  • [60] Qin MR, Xing LP, Wu JH, Wen SL, Luo JY, et al. Skeletal Muscle-Derived Exosomal miR-146a-5p Inhibits Adipogenesis by Mediating Muscle-Fat Axis and Targeting GDF5-PPARγ Signaling. Int. J. Mol. Sci. 2023, 24(5):4561.
  • [61] Huang R, Shi J, Wei R, Li J. Challenges of insulin-like growth factor-1 testing. Crit. Rev. Clin. Lab. Sci. 2024, 61(5):388–403.
  • [62] Yakar S, Liu JL, Fernandez AM, Wu Y, Schally AV, et al. Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 2001, 50(5):1110–1118.
  • [63] Zhou B, Li C, Qi W, Zhang Y, Zhang F, et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 2012, 55(7):2032–2043.
  • [64] Kornfeld JW, Baitzel C, Könner AC, Nicholls HT, Vogt MC, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013, 494(7435):111–115.
  • [65] Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(22):9232–9237.
  • [66] Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 2011, 13(4):434–446.
  • [67] Ji YD, Luo ZL, Gao H, Dos Reis FCG, Bandyopadhyay G, et al. Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nat. Metab. 2021, 3(9):1163–1174.
  • [68] Wu J, Dong T, Chen T, Sun J, Luo J, et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism 2020, 103:154006.
  • [69] Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14(2):88–98.
  • [70] Hudish LI, Reusch JE, Sussel L. beta Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J. Clin. Invest. 2019, 129(10):4001–4008.
  • [71] Castano C, Kalko S, Novials A,Parrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. U.S.A. 2018, 115(48):12158–12163.
  • [72] Xihua L, Shengjie T, Weiwei G, Matro E, Tingting T, et al. Circulating miR-143-3p inhibition protects against insulin resistance in Metabolic Syndrome via targeting of the insulin-like growth factor 2 receptor. Transl. Res. 2019, 205:33–43.
  • [73] Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019, 15(12):731–743.